Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Mhairi Macrae is active.

Publication


Featured researches published by I. Mhairi Macrae.


Journal of Cerebral Blood Flow and Metabolism | 2000

Estrogen as a neuroprotectant in stroke

Patricia D. Hurn; I. Mhairi Macrae

Recent evidence suggests that reproductive steroids are important players in shaping stroke outcome and cerebrovascular pathophysiologic features. Although women are at lower risk for stroke than men, this native protection is lost in the postmenopausal years. Therefore, aging women sustain a large burden for stroke, contrary to a popular misconception that cancer is the main killer of women. Further, the value of hormone replacement therapy in stroke prevention or in improving outcome remains controversial. Estrogen has been the best studied of the sex steroids in both laboratory and clinical settings and is considered increasingly to be an endogenous neuroprotective agent. A growing number of studies demonstrate that exogenous estradiol reduces tissue damage resulting from experimental ischemic stroke in both sexes. This new concept suggests that dissecting interactions between estrogen and cerebral ischemia will yield novel insights into generalized cellular mechanisms of injury. Less is known about estrogens undesirable effects in brain, for example, the potential for increasing seizure susceptibility and migraine. This review summarizes gender-specific aspects of clinical and experimental stroke and results of estrogen treatment on outcome in animal models of cerebral ischemia, and briefly discusses potential vascular and parenchymal mechanisms by which estrogen salvages brain.


Journal of Cerebral Blood Flow and Metabolism | 1993

Endothelin-1-Induced Reductions in Cerebral Blood Flow: Dose Dependency, Time Course, and Neuropathological Consequences

I. Mhairi Macrae; Michael J. Robinson; David I. Graham; John L. Reid; James McCulloch

The capacity of endothelin-1 to induce severe reductions in cerebral blood flow and ischaemic neuronal damage was assessed in anaesthetised rats. Endothelin-1 (25 μl of 10−7–10−4 M) was applied to the adventitial surface of an exposed middle cerebral artery and striatal blood flow assessed by the hydrogen clearance technique. Endothelin-1 induced severe dose-dependent reductions in cerebral blood flow (e.g., minimum CBF at 10−5 M of 9 ± 11 ml 100 g−1 min−1 compared to 104 ± 22 ml 100 g−1 min−1 with vehicle, p < 0.05), which persisted for at least 60 min at each concentration of endothelin-1. Application of endothelin-1 to the middle cerebral artery produced dose-dependent ischaemic brain damage (e.g., volume of damage of 65 ± 34 mm3 at 10−5 M compared to 0.22 ± 0.57 mm3 for vehicle, p < 0.01). These data demonstrate that endothelin-1 is capable of reducing blood flow to pathologically low levels and provide a new model of controlled focal ischaemia followed by reperfusion.


Experimental Neurology | 1997

Influence of ischemia and reperfusion on the course of brain tissue swelling and blood-brain barrier permeability in a rodent model of transient focal cerebral ischemia.

Gail Gartshore; James Patterson; I. Mhairi Macrae

Brain swelling is a serious complication associated with focal ischemia in stroke and severe head injury. Experimentally, reperfusion following focal cerebral ischemia exacerbates the level of brain swelling. In this study, the permeability of the blood-brain barrier has been investigated as a possible cause of reperfusion-related acute brain swelling. Blood-brain barrier disruption was investigated using Evans Blue dye and [14C]aminoisobutyric acid autoradiography in a rodent model of reversible middle cerebral artery (MCA) occlusion. Acute brain swelling and cerebral blood flow (CBF) during ischemia and reperfusion were analyzed from double-label CBF autoradiograms after application of the potent vasoconstrictor peptide endothelin-1 to the MCA. Ischemia was apparent within ipsilateral MCA territory, 5 min after endothelin-1 application to the exposed artery. Reperfusion, examined at 30 min and 1, 2, and 4 h, was gradual but incomplete within this time frame in the core of middle cerebral artery territory and associated with significant brain swelling. Ipsilateral hemispheric swelling increased over time to a maximum (>5%) at 1-2 h after endothelin-1 but was not associated with a significant increase in the ipsilateral transfer constant for [14C]aminoisobutyric acid over this time frame. These results indicate that endothelin-1 induced focal cerebral ischemia is associated with an acute but reversible hemispheric swelling during the early phase of reperfusion which is not associated with a disruption of the blood-brain barrier.


Journal of Cerebral Blood Flow and Metabolism | 2008

Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra

Celestine Santosh; David Brennan; Christopher McCabe; I. Mhairi Macrae; William M. Holmes; David I. Graham; Lindsay Gallagher; Barrie Condon; Donald M. Hadley; Keith W. Muir; Willy Gsell

We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin:deoxyhemoglobin ratios and T2* signal change during ‘oxygen challenge’ (OC, 5 mins 100% O2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n = 5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n = 5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronal morphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra.


Brain Research | 2005

Effects of 17β-oestradiol on cerebral ischaemic damage and lipid peroxidation

Kirsty Gordon; I. Mhairi Macrae; Hilary V.O. Carswell

Abstract Introduction Numerous studies demonstrate oestrogens neuroprotective effect in stroke models, although the mechanisms are unclear. Since oestrogen is an antioxidant, we tested the hypothesis that oestrogen reduces stroke-induced damage by reducing free radical damage, particularly lipid peroxidation. Methods Sprague–Dawley rats were ovariectomised and a 17β-oestradiol (0.25 mg, 21 day release) or placebo pellet implanted subcutaneously. Two weeks later, permanent middle cerebral artery occlusion (MCAO) was induced by intraluminal filament. At 2 and 24 h post-MCAO, neurological deficits were assessed. At the 24 h end point, plasma oestradiol was measured and brain sections stained with haematoxylin and eosin or lipid peroxidation marker, 4-hydroxynonenol (4-HNE) immunohistochemistry carried out to measure infarct volume and volume of tissue displaying oxidative damage, respectively. Results Plasma 17β-oestradiol in oestradiol and placebo groups was 72.6 ± 38.0 and 9.3 ± 7.4 pg/ml (mean ± SD), respectively. Infarct volume was significantly increased (118%) with oestradiol treatment (oestradiol = 124 ± 84.5, placebo = 57 ± 46.4 mm3, mean ± SD, P Conclusion Two week pre-treatment with a high physiological dose of 17β-oestradiol increased infarct volume after permanent MCAO. Although contrary to our original hypothesis, this result demonstrates that oestrogen does have the capacity to promote detrimental actions in the stroke-injured brain. Given the wide use of oestrogen (contraception, osteoporosis and menopause), more research to clarify the influence of oestrogen on brain injury is urgently required.


Journal of Cerebral Blood Flow and Metabolism | 2002

Estrogen is neuroprotective via an apolipoprotein E-dependent mechanism in a mouse model of global ischemia

Karen Horsburgh; I. Mhairi Macrae; Hilary V.O. Carswell

Estrogen can ameliorate brain damage in experimental models of focal cerebral ischemia. In vitro, estrogen increases levels of apolipoprotein E (apoE), which also has neuroprotective effects in brain injury. The authors tested the hypotheses that physiologically relevant levels of 17β-estradiol are neuroprotective in global cerebral ischemia and that neuroprotection is mediated via apoE. In the first study, subcutaneous implants of 17β-estradiol were tested in female C57Bl/6J mice (ovariectomized and nonovariectomized) and plasma levels measured by radioimmunoassay to validate that physiologically relevant levels could be achieved. In the second study, female C57Bl/6J and apoE-deficient mice were ovariectomized and implanted with 17β-estradiol or placebo pellet. Two weeks later, transient global ischemia was induced by bilateral carotid artery occlusion and the mice killed after 72 hours. Ischemic and normal neurons were counted in the caudate nucleus and CA1 pyramidal cell layer and the percentage of neuronal damage was compared between the treated groups. In C57Bl/6J mice, there was less neuronal damage in the 17β-estradiol-treated group compared with placebo group in the caudate nucleus (15 ± 20% versus 39 ± 27%, P = 0.02) and in the CA1 pyramidal cell layer (1.8 ± 2% versus 10 ± 14%, P = 0.08). In contrast, neuronal damage was not significantly different between the 17β-estradiol and placebo groups in apoE-deficient mice in the caudate nucleus (47 ± 35% versus 53 ± 29%, P = 0.7) or in the CA1 pyramidal cell layer (24 ± 19% versus 24 ± 19%, P = 1.0). The data indicate a neuroprotective role for estrogen in global ischemia, the mechanism of which is apoE-dependent.


Hypertension | 1999

Genetic and Gender Influences on Sensitivity to Focal Cerebral Ischemia in the Stroke-Prone Spontaneously Hypertensive Rat

Hilary V.O. Carswell; Niall H. Anderson; James S. Clark; Delyth Graham; Baxter Jeffs; Anna F. Dominiczak; I. Mhairi Macrae

We have investigated genetic transmission of increased sensitivity to focal cerebral ischemia and the influence of gender in the stroke-prone spontaneously hypertensive rat (SHRSP). Halothane-anesthetized, 3- to 5-month-old male and female Wistar-Kyoto rats (WKY), SHRSP, and the first filial generation rats (F1 crosses 1 and 2) underwent distal (2 mm) permanent middle cerebral artery occlusion (MCAO) by electrocoagulation. Infarct volume was measured by using hematoxylin-eosin-stained sections and image analysis 24 hours after ischemia and expressed as a percentage of the volume of the ipsilateral hemisphere. Infarct volume in males and females grouped together were significantly larger in SHRSP, F1 cross 1 (SHRSP father), and F1 cross 2 (WKY father), at 36.6+/-2.3% (mean+/-SEM, P<0.001, n=15), 25.4+/-2.4% (P<0.01, n=14), and 33. 9+/-1.6% (P<0.001, n=18), respectively, compared with WKY (14+/-2%, n=17). Male F1 cross 1 (18.9+/-2.4%, n=6) developed significantly smaller infarcts than male F1 cross 2 (32.8+/-2%, n=8, P<0.005). Females, which underwent ischemia during metestrus, developed larger infarcts than respective males. A group of females in which the cycle was not controlled for developed significantly smaller infarcts than females in metestrus. Thus, the increased sensitivity to MCAO in SHRSP is retained in both F1 cross 1 and cross 2 hybrids, suggesting a dominant or codominant trait; response to cerebral ischemia appears to be affected by gender and stage in the estrous cycle. In addition, the male progenitor of the cross (ie, SHRSP versus WKY) influences stroke sensitivity in male F1 cohorts.


Stroke | 1998

Susceptibility to Cerebral Infarction in the Stroke-Prone Spontaneously Hypertensive Rat Is Inherited as a Dominant Trait

Julie A. Gratton; André Sauter; Markus Rudin; Kennedy R. Lees; John H. McColl; John L. Reid; Anna F. Dominiczak; I. Mhairi Macrae

BACKGROUND AND PURPOSE Susceptibility to cerebral infarction was compared in stroke-prone spontaneously hypertensive (SHRSP), normotensive Wistar-Kyoto (WKY) rats, and F1 hybrids derived from a SHRSP/WKY cross. METHODS The proximal left middle cerebral artery (MCA) was occluded under anesthesia and infarct volume assessed 24 hours later by magnetic resonance imaging and confirmed 5 days later by quantitative histopathology. Total hemispheric infarct volume was expressed as a percentage of the total brain volume. RESULTS Infarct volumes measured by MRI in adult SHRSP (19.5 +/- 2.0%) and F1 hybrid rats (19.4 +/- 1.9%) were significantly greater than in WKY (11.1 +/- 2.4; CI [6.07, 10.76]) and (5.93, 10.52), respectively, P<.001). Sensitivity to an ischemic insult was unrelated to blood pressure: although systolic blood pressures differed between young versus adult male SHRSP and between female versus male SHRSP and F1 hybrids, infarct volumes were equal. A close correlation was found between infarct volumes measured by MRI and histology (r=.92, P<.0001). CONCLUSIONS Outcome to MCA occlusion (MCAO) measured with MRI provides a reproducible and nonterminal quantitative phenotypic marker of stroke susceptibility in the SHRSP. This is the first study to employ MCAO with MRI to quantify stroke susceptibility in F1 hybrid rats and indicates a dominant mode of inheritance for this phenotype.


Stroke | 2009

Differences in the Evolution of the Ischemic Penumbra in Stroke-Prone Spontaneously Hypertensive and Wistar-Kyoto Rats

Christopher McCabe; Lindsay Gallagher; Willy Gsell; Delyth Graham; Anna F. Dominiczak; I. Mhairi Macrae

Background and Purpose— Stroke-prone spontaneously hypertensive rats (SHRSP) are a highly pertinent stroke model with increased sensitivity to focal ischemia compared with the normotensive reference strain (Wistar-Kyoto rats; WKY). Study aims were to investigate temporal changes in the ischemic penumbra in SHRSP compared with WKY. Methods— Permanent middle cerebral artery occlusion was induced with an intraluminal filament. Diffusion- (DWI) and perfusion- (PWI) weighted magnetic resonance imaging was performed from 1 to 6 hours after stroke, with the PWI-DWI mismatch used to define the penumbra and thresholded apparent diffusion coefficient (ADC) maps used to define ischemic damage. Results— There was significantly more ischemic damage in SHRSP than in WKY from 1 to 6 hours after stroke. The perfusion deficit remained unchanged in WKY (39.9±6 mm2 at 1 hour, 39.6±5.3 mm2 at 6 hours) but surprisingly increased in SHRSP (43.9±9.2 mm2 at 1 hour, 48.5±7.4 mm2 at 6 hours; P=0.01). One hour after stroke, SHRSP had a significantly smaller penumbra (3.4±5.8 mm2) than did WKY (9.7±3.8, P=0.03). In WKY, 56% of the 1-hour penumbra area was incorporated into the ADC lesion by 6 hours, whereas in SHRSP, the small penumbra remained static owing to the temporal increase in both ADC lesion size and perfusion deficit. Conclusions— First, SHRSP have significantly more ischemic damage and a smaller penumbra than do WKY within 1 hour of stroke; second, the penumbra is recruited into the ADC abnormality over time in both strains; and third, the expanding perfusion deficit in SHRSP predicts more tissue at risk of infarction. These results have important implications for management of stroke patients with preexisting hypertension and suggest ischemic damage could progress at a faster rate and over a longer time frame in the presence of hypertension.


Journal of Cerebral Blood Flow and Metabolism | 2004

Differential Effects of 17β-Estradiol upon Stroke Damage in Stroke Prone and Normotensive Rats

Hilary V.O. Carswell; Deborah Bingham; Kirsty Wallace; Margaret Nilsen; David I. Graham; Anna F. Dominiczak; I. Mhairi Macrae

We previously reported that during pro-estrus (high endogenous estrogen levels), brain damage after middle cerebral artery occlusion (MCAO) was reduced in stroke-prone spontaneously hypertensive rats (SHRSP) but not in normotensive Wistar Kyoto rat (WKY). In the present study, we examined the effect of exogenous estrogen on brain damage after MCAO in SHRSP and WKY. A 17β-estradiol (0.025mg or 0.25mg, 21 day release) or matching placebo pellet was implanted into ovariectomized WKY and SHRSP (3 to 4 months old) who then underwent distal diathermy-induced MCAO 2 weeks later. Plasma 17β-estradiol levels for placebo and 17β-estradiol groups were as follows: WKY 0.025 mg 16.4 ± 8.5 (pg/mL, mean ± SD) and 25.85 ± 12.6; WKY 0.25 mg 18.2 ± 9.0 and 69.8 ± 27.4; SHRSP 0.25 mg 20.7 ± 8.8 and 81.0 ± 16.9. In SHRSP, infarct volumes at 24 hours after MCAO were similar in placebo and 17β-estradiol groups: SHRSP 0.025 mg 126.7 ± 15.3 mm3 (n = 6) and 114.0 ± 14.1 mm3 (n = 8) (not significant); SHRSP 0.25 mg 113.5 ± 22.3 mm3 (n = 8) and 129.7 ± 26.2 mm3 (n = 7) (not significant), respectively. In WKY, 17β-estradiol significantly increased infarct volume by 65% with 0.025mg dose [36.1 ± 20.7 mm3 (n = 8) and 59.7 ± 19.3 mm3 (n = 8) (P = 0.033, unpaired t-test)] and by 96% with 0.25 mg dose [55.9 ± 36.4 mm3 (n = 8) and 109.7 ± 6.7 mm3 (n = 4) (P = 0.017)]. Thus, 17β-estradiol increased stroke damage in normotensive rats with no significant effect in stroke-prone rats. Despite being contrary to our hypothesis, our findings add substance to the recently reported negative effects of 17β-estradiol in clinical studies.

Collaboration


Dive into the I. Mhairi Macrae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barrie Condon

Southern General Hospital

View shared research outputs
Top Co-Authors

Avatar

David I. Graham

Southern General Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge