I. Myserlis
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. Myserlis.
Astronomy and Astrophysics | 2015
E. Angelakis; L. Fuhrmann; N. Marchili; L. Foschini; I. Myserlis; V. Karamanavis; Stefanie Komossa; D. A. Blinov; T. P. Krichbaum; A. Sievers; H. Ungerechts; J. A. Zensus
We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systematic monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, implying a mildly relativistic jet. The computed jet powers show very energetic flows. The radio polarisation in one case clearly implies a quiescent jet underlying the recursive flaring activity. Despite the generally lower flux densities, the sources appear to show all typical characteristics seen in blazars that are powered by relativistic jets.
Monthly Notices of the Royal Astronomical Society | 2016
D. Blinov; Vasiliki Pavlidou; I. E. Papadakis; T. Hovatta; T. J. Pearson; I. Liodakis; G. V. Panopoulou; E. Angelakis; M. Baloković; H. K. Das; P. Khodade; S. Kiehlmann; O. G. King; A. J. Kus; Nikolaos D. Kylafis; Ashish A. Mahabal; A. Marecki; D. Modi; I. Myserlis; E. Paleologou; I. Papamastorakis; B. M. Pazderska; Eugeniusz Pazderski; Chaitanya V. Rajarshi; A. N. Ramaprakash; A. C. S. Readhead; P. Reig; K. Tassis; J. A. Zensus
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.
Monthly Notices of the Royal Astronomical Society | 2013
F. D'Ammando; M. Orienti; J. Finke; C. M. Raiteri; E. Angelakis; L. Fuhrmann; M. Giroletti; T. Hovatta; V. Karamanavis; W. Max-Moerbeck; I. Myserlis; Anthony C. S. Readhead; J. L. Richards
The narrow-line Seyfert 1 galaxy SBS0846+513 was first detected by the Large Area Telescope (LAT) on-board Fermi in 2011 June–July when it underwent a period of flaring activity. Since then, as Fermi continues to accumulate data on this source, its flux has been monitored on a daily basis. Two further γ-ray flaring episodes from SBS0846+513 were observed in 2012 May and August, reaching a daily peak flux integrated above 100 MeV of (50±12)×10 8 ph cm 2 s 1 , and (73±14)×10 8 ph cm 2 s 1 on May 24 and August 7, respectively. Three outbursts were detected at 15 GHz
Monthly Notices of the Royal Astronomical Society | 2016
E. Angelakis; T. Hovatta; D. Blinov; Vasiliki Pavlidou; S. Kiehlmann; I. Myserlis; M. Böttcher; P. Mao; G. V. Panopoulou; I. Liodakis; O. G. King; M. Baloković; A. J. Kus; Nikolaos D. Kylafis; Ashish A. Mahabal; A. Marecki; E. Paleologou; I. E. Papadakis; I. Papamastorakis; E. Pazderski; T. J. Pearson; S. Prabhudesai; A. N. Ramaprakash; A. C. S. Readhead; P. Reig; K. Tassis; Meg Urry; J. A. Zensus
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{\sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the random- ness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a pre- ferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
Astronomy and Astrophysics | 2016
L. Fuhrmann; E. Angelakis; J. A. Zensus; I. Nestoras; N. Marchili; V. Pavlidou; V. Karamanavis; H. Ungerechts; T. P. Krichbaum; Stefan Larsson; Sang-Sung Lee; W. Max-Moerbeck; I. Myserlis; T. J. Pearson; A. C. S. Readhead; J. L. Richards; A. Sievers; Bong Won Sohn
Context. To fully exploit the scientific potential of the Fermi mission for the physics of active galactic nuclei (AGN), we initiated the F-GAMMA programme. Between 2007 and 2015 the F-GAMMA was the prime provider of complementary multi-frequency monitoring in the radio regime. Aims. We quantify the radio variability of γ-ray blazars. We investigate its dependence on source class and examine whether the radio variability is related to the γ-ray loudness. Finally, we assess the validity of a putative correlation between the two bands. Methods. The F-GAMMA performed monthly monitoring of a sample of about 60 sources at up to twelve radio frequencies between 2.64 and 228.39 GHz. We perform a time series analysis on the first 2.5-yr data set to obtain variability parameters. A maximum likelihood analysis is used to assess the significance of a correlation between radio and γ-ray fluxes. Results. We present light curves and spectra (coherent within ten days) obtained with the Effelsberg 100 m and IRAM 30 m telescopes. All sources are variable across all frequency bands with amplitudes increasing with frequency up to rest frame frequencies of around 60–80 GHz as expected by shock-in-jet models. Compared to flat-spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs) show systematically lower variability amplitudes, brightness temperatures, and Doppler factors at lower frequencies, while the difference vanishes towards higher ones. The time scales appear similar for the two classes. The distribution of spectral indices appears flatter or more inverted at higher frequencies for BL Lacs. Evolving synchrotron self-absorbed components can naturally account for the observed spectral variability. We find that the Fermi-detected sources show larger variability amplitudes, brightness temperatures, and Doppler factors than non-detected ones. Flux densities at 86.2 and 142.3 GHz correlate with 1 GeV fluxes at a significance level better than 3σ, implying that γ rays are produced very close to the mm-band emission region.
Astronomy and Astrophysics | 2015
Stefanie Komossa; Dawei Xu; L. Fuhrmann; Dirk Grupe; S. Yao; Zhou Fan; I. Myserlis; E. Angelakis; V. Karamanavis; Weimin Yuan; J. A. Zensus
Aims. Radio-loud narrow-line type 1 galaxies provide us with a fresh look at the blazar phenomenon, the causes of radio loudness, and the physics of jet formation. We present a multi-wavelength study of the radio-loud narrow-line type 1 quasar RX J2314.9+2243, which exhibits some remarkable multi-wavelength properties. It is among the few radio-loud narrow-line type 1 galaxies, with a tentative γ-ray detection, is luminous in the infrared, and shows an exceptionally broad and blueshifted [OIII]λ5007 emission-line component. Methods. In order to understand the nature of this source, we have obtained optical, UV, X-ray, and radio observations of RX J2314.9+2243. Results. Its spectral energy distribution (SED) shows a broad hump extending between the IR and far-UV, a steep radio spectrum and flat X-ray spectrum. Its IR to far-UV SED is consistent with a scenario, in which synchrotron emission from a jet dominates the broadband emission, even though an absorption scenario cannot yet be fully excluded. The high blueshift of its very broad [OIII] component, 1260 km s −1 , is consistent with a face-on view, with the jet (and outflow) pointing towards us. RX J2314.9+2243 likely represents an
Astronomy and Astrophysics | 2016
V. Karamanavis; L. Fuhrmann; T. P. Krichbaum; E. Angelakis; Jeffrey A. Hodgson; I. Nestoras; I. Myserlis; J. A. Zensus; A. Sievers; S. Ciprini
Context. Blazars are among the most energetic objects in the Universe. In 2008 August, Fermi/LAT detected the blazar PKS 1502+106 showing a rapid and strong gamma-ray outburst followed by high and variable flux over the next months. This activity at high energies triggered an intensive multi-wavelength campaign covering also the radio, optical, UV, and X-ray bands indicating that the flare was accompanied by a simultaneous outburst at optical/UV/X-rays and a delayed outburst at radio bands. Aims: In the current work we explore the phenomenology and physical conditions within the ultra-relativistic jet of the gamma-ray blazar PKS 1502+106. Additionally, we address the question of the spatial localization of the MeV/GeV-emitting region of the source. Methods: We utilize ultra-high angular resolution mm-VLBI observations at 43 and 86 GHz complemented by VLBI observations at 15 GHz. We also employ single-dish radio data from the F-GAMMA program at frequencies matching the VLBI monitoring. Results: PKS 1502+106 shows a compact core-jet morphology and fast superluminal motion with apparent speeds in the range 5--22 c. Estimation of Doppler factors along the jet yield values between ~7 up to ~50. This Doppler factor gradient implies an accelerating jet. The viewing angle towards the source differs between the inner and outer jet, with the former at ~3 degrees and the latter at ~1 degree, after the jet bends towards the observer beyond 1 mas. The de-projected opening angle of the ultra-fast, magnetically-dominated jet is found to be (3.8 +/- 0.5) degrees. A single jet component can be associated with the pronounced flare both at high-energies and in radio bands. Finally, the gamma-ray emission region is localized at less than 5.9 pc away from the jet base.
Monthly Notices of the Royal Astronomical Society | 2017
I. Liodakis; N. Marchili; E. Angelakis; L. Fuhrmann; I. Nestoras; I. Myserlis; V. Karamanavis; T. P. Krichbaum; A. Sievers; H. Ungerechts; J. A. Zensus
Recent population studies have shown that the variability Doppler factors can adequately describe blazars as a population. We use the flux density variations found within the extensive radio multi-wavelength datasets of the F-GAMMA program, a total of 10 frequencies from 2.64 up to 142.33 GHz, in order to estimate the variability Doppler factors for 58
Research in Astronomy and Astrophysics | 2016
L. Fuhrmann; V. Karamanavis; Stefanie Komossa; E. Angelakis; T. P. Krichbaum; Robert Schulz; A. Kreikenbohm; M. Kadler; I. Myserlis; E. Ros; I. Nestoras; J. Anton Zensus
\gamma
Astronomy and Astrophysics | 2016
V. Karamanavis; L. Fuhrmann; E. Angelakis; I. Nestoras; I. Myserlis; T. P. Krichbaum; J. A. Zensus; H. Ungerechts; A. Sievers; M. A. Gurwell
-ray bright sources, for 20 of which no variability Doppler factor has been estimated before. We employ specifically designed algorithms in order to obtain a model for each flare at each frequency. We then identify each event and track its evolution through all the available frequencies for each source. This approach allows us to distinguish significant events producing flares from stochastic variability in blazar jets. It also allows us to effectively constrain the variability brightness temperature and hence the variability Doppler factor as well as provide error estimates. Our method can produce the most accurate (16\% error on average) estimates in the literature to date.