Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Neill Reid is active.

Publication


Featured researches published by I. Neill Reid.


The Astronomical Journal | 2003

The USNO-B Catalog

David G. Monet; Stephen E. Levine; Blaise Canzian; Harold D. Ables; Alan R. Bird; Conard C. Dahn; Harry H. Guetter; Hugh C. Harris; Arne A. Henden; S. K. Leggett; Harold F. Levison; Christian B. Luginbuhl; Joan Martini; Alice K. B. Monet; Jeffrey A. Munn; Jeffrey R. Pier; Albert R. Rhodes; Betty Riepe; Stephen Sell; Ronald C. Stone; Frederick J. Vrba; Richard L. Walker; Gart Westerhout; Robert J. Brucato; I. Neill Reid; William Schoening; M. Hartley; Mike Read; Sara Tritton

USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21, 02 astrometric accuracy at J2000, 0.3 mag photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from nonstellar objects. A brief discussion of various issues is given here, but the actual data are available from the US Naval Observatory Web site and others.


The Astrophysical Journal | 1999

Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS)*

J. Davy Kirkpatrick; I. Neill Reid; James Liebert; Roc Michael Cutri; Brant O. Nelson; Charles A. Beichman; Conard C. Dahn; David G. Monet; John E. Gizis; Michael F. Skrutskie

Before the 2-Micron All-Sky Survey (2MASS) began, only six objects were known with spectral types later than M9.5 V. In the first 371 sq. deg. of actual 2MASS survey data, we have identified another twenty such objects spectroscopically confirmed using the Low Resolution Imaging Spectrograph (LRIS) at the W.M. Keck Observatory.


The Astronomical Journal | 2000

67 Additional L Dwarfs Discovered by the Two Micron All Sky Survey

J. Davy Kirkpatrick; I. Neill Reid; James Liebert; John E. Gizis; Adam J. Burgasser; David G. Monet; Conard C. Dahn; Brant O. Nelson; Rik J. Williams

We present JHKs photometry, far red spectra, and spectral classifications for an additional 67 L dwarfs discovered by the Two Micron All Sky Survey. One of the goals of this new search was to locate more examples of the latest L dwarfs. Of the 67 new discoveries, 17 have types of L6 or later. Analysis of these new discoveries shows that Hα emission has yet to be convincingly detected in any L dwarf later than type L4.5, indicating a decline or absence of chromospheric activity in the latest L dwarfs. Further analysis shows that 16 (and possibly four more) of the new L dwarfs are lithium brown dwarfs and that the average line strength for those L dwarfs showing lithium increases until type ~L6.5 V, then declines for later types. This disappearance may be the first sign of depletion of atomic lithium as it begins to form into lithium-bearing molecules. Another goal of the search was to locate nearer, brighter L dwarfs of all subtypes. Using absolute magnitudes for 17 L dwarf systems with trigonometric parallax measurements, we develop spectrophotometric relations to estimate distances to the other L dwarfs. Of the 67 new discoveries, 21 have photometric distances placing them within 25 pc of the Sun. A table of all known L and T dwarfs believed to lie within 25 pc—53 in total — is also presented. Using the distance measurement of the coolest L dwarf known, we calculate that the gap in temperature between L8 and the warmest known T dwarfs is less than 350 K and probably much less. If the transition region between the two classes spans a very small temperature interval, this would explain why no transition objects have yet been uncovered. This evidence, combined with model fits to low-resolution spectra of late M and early L dwarfs, indicates that L-class objects span the range 1300 K Teff 2000 K. The near-infrared color-color diagram shows that L dwarfs fall along a natural, redder extension of the well-known M dwarf track. These near-infrared colors get progressively redder for later spectral types, with the L dwarf sequence abruptly ending near (J-H, H-Ks, J-Ks) ≈ (1.3, 0.8, 2.1).


The Astronomical Journal | 2002

Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs

Conard C. Dahn; Hugh C. Harris; Frederick J. Vrba; Harry H. Guetter; Blaise Canzian; Arne A. Henden; Stephen E. Levine; Christian B. Luginbuhl; Alice K. B. Monet; David G. Monet; Jeffrey R. Pier; Ronald C. Stone; Richard L. Walker; Adam J. Burgasser; John E. Gizis; J. Davy Kirkpatrick; James Liebert; I. Neill Reid

Trigonometric parallax determinations are presented for 28 late-type dwarfs and brown dwarfs, including eight M dwarfs with spectral types between M7 and M9.5, 17 L dwarfs with spectral types between L0 and L8, and three T dwarfs. Broadband photometry at CCD wavelengths (VRIz*) and/or near-IR wavelengths (JHK) is presented for these objects and for 24 additional late-type dwarfs. Supplemented with astrometry and photometry from the literature, including 10 L and two T dwarfs with parallaxes established by association with bright, usually Hipparcos primaries, this material forms the basis for studying various color-color and color?absolute magnitude relations. The I-J color is a good predictor of absolute magnitude for late M and L dwarfs. MJ becomes monotonically fainter with I-J color and with spectral type through late L dwarfs, then brightens for early T dwarfs. The combination of z*JK colors alone can be used to classify late M, early L, and T dwarfs accurately, as well as to predict their absolute magnitudes, but is less effective at untangling the scatter among mid- and late L dwarfs. The mean tangential velocity of these objects is found to be slightly less than that for dM stars in the solar neighborhood, consistent with a sample with a mean age of several Gyr. Using colors to estimate bolometric corrections and models to estimate stellar radii, effective temperatures are derived. The latest L dwarfs are found to have Teff ~ 1360 K.


The Astrophysical Journal | 2002

The Spectra of T Dwarfs. I. Near-Infrared Data and Spectral Classification

Adam J. Burgasser; J. Davy Kirkpatrick; Michael E. Brown; I. Neill Reid; Adam Burrows; James Liebert; Keith Matthews; John E. Gizis; Conard C. Dahn; David G. Monet; Roc Michael Cutri; Michael F. Skrutskie

We present near-infrared spectra for a sample of T dwarfs, including 11 new discoveries made using the 2 Micron All Sky Survey. These objects are distinguished from warmer (L-type) brown dwarfs by the presence of methane absorption bands in the 1-2.5 μm spectral region. A first attempt at a near-infrared classification scheme for T dwarfs is made, based on the strengths of CH_4 and H_2O bands and the shapes of the 1.25, 1.6, and 2.1 μm flux peaks. Subtypes T1 V-T8 V are defined, and spectral indices useful for classification are presented. The subclasses appear to follow a decreasing T_(eff) scale, based on the evolution of CH_4 and H_2O bands and the properties of L and T dwarfs with known distances. However, we speculate that this scale is not linear with spectral type for cool dwarfs, due to the settling of dust layers below the photosphere and subsequent rapid evolution of spectral morphology around T_(eff) ~ 1300-1500 K. Similarities in near-infrared colors and continuity of spectral features suggest that the gap between the latest L dwarfs and earliest T dwarfs has been nearly bridged. This argument is strengthened by the possible role of CH_4 as a minor absorber, shaping the K-band spectra of the latest L dwarfs. Finally, we discuss one peculiar T dwarf, 2MASS 0937+2931, which has very blue near-infrared colors (J - K_s = -0.89 ± 0.24) due to suppression of the 2.1 μm peak. The feature is likely caused by enhanced collision-induced H_2 absorption in a high-pressure or low-metallicity photosphere.


The Astronomical Journal | 2008

Constraining the Age-Activity Relation for Cool Stars: The Sloan Digital Sky Survey Data Release 5 Low-Mass Star Spectroscopic Sample

Andrew A. West; Suzanne L. Hawley; John J. Bochanski; Kevin R. Covey; I. Neill Reid; Saurav Dhital; Eric J. Hilton; Michael Masuda

We present a spectroscopic analysis of over 38,000 low-mass stars from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Analysis of this unprecedentedly large sample confirms the previously detected decrease in the fraction of magnetically active stars (as traced by Hα emission) as a function of the vertical distance from the Galactic plane. The magnitude and slope of this effect vary as a function of spectral type. Using simple 1D dynamical models, we demonstrate that the drop in activity fraction can be explained by thin-disk dynamical heating and a rapid decrease in magnetic activity. The timescale for this rapid activity decrease changes according to the spectral type. By comparing our data to the simulations, we calibrate the age-activity relation at each M dwarf spectral type. We also present evidence for a possible decrease in the metallicity as a function of height above the Galactic plane. In addition to our activity analysis, we provide line measurements, molecular band indices, colors, radial velocities, 3D space motions, and mean properties as a function of spectral type for the SDSS DR5 low-mass star sample.


The Astronomical Journal | 2000

New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence

John E. Gizis; David G. Monet; I. Neill Reid; J. Davy Kirkpatrick; James Liebert; Rik J. Williams

We have combined 2MASS and POSS II data in a search for nearby ultracool (later than M6.5) dwarfs with Ks 6 A) ultracool M dwarfs are consistent with an ordinary old disk stellar population, while the kinematics of inactive ultracool M dwarfs are more typical of a 0.5 Gyr old population. The early L dwarfs in the sample have kinematics consistent with old ages, suggesting that the hydrogen-burning limit is near spectral types L2–L4. We use the available data on M and L dwarfs to show that chromospheric activity drops with decreasing mass and temperature and that at a given (M8 or later) spectral type, the younger field (brown) dwarfs are less active than many of the older, more massive field stellar dwarfs. Thus, contrary to the well-known stellar age-activity relationship, low activity in field ultracool dwarfs can be an indication of comparative youth and substellar mass.


The Astronomical Journal | 2007

The ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without Previous Hubble Space Telescope Photometry

Ata Sarajedini; Luigi Rolly Bedin; Brian Chaboyer; Aaron Dotter; Michael Hiram Siegel; Jay Anderson; Antonio Aparicio; Ivan R. King; Steven R. Majewski; Antonio Marin-Franch; Giampaolo Piotto; I. Neill Reid; Alfred Rosenberg

We present the first results of a large Advanced Camera for Surveys (ACS) survey of Galactic globular clusters. This Hubble Space Telescope (HST) Treasury project is designed to obtain photometry with S/N (signal-to-noise ratio) 10 for main-sequence stars with masses 0.2 M⊙ in a sample of globulars using the ACS Wide Field Channel. Here we focus on clusters without previous HST imaging data. These include NGC 5466, NGC 6779, NGC 5053, NGC 6144, Palomar 2, E3, Lynga 7, Palomar 1, and NGC 6366. Our color-magnitude diagrams (CMDs) extend reliably from the horizontal branch to as much as 7 mag fainter than the main-sequence turnoff and represent the deepest CMDs published to date for these clusters. Using fiducial sequences for three standard clusters (M92, NGC 6752, and 47 Tuc) with well-known metallicities and distances, we perform main-sequence fitting on the target clusters in order to obtain estimates of their distances and reddenings. These comparisons, along with fitting the cluster main sequences to theoretical isochrones, yield ages for the target clusters. We find that the majority of the clusters have ages that are consistent with the standard clusters at their metallicities. The exceptions are E3, which appears ~2 Gyr younger than 47 Tuc, and Pal 1, which could be as much as 8 Gyr younger than 47 Tuc.


The Astronomical Journal | 2003

Meeting the Cool Neighbors. V. A 2MASS-Selected Sample of Ultracool Dwarfs

Kelle L. Cruz; I. Neill Reid; James Liebert; J. Davy Kirkpatrick; Patrick J. Lowrance

We present the initial results of our effort to create a statistically robust, volume-limited sample of ultracool dwarfs from the Two Micron All Sky Survey Second Incremental Data Release. We are engaged in a multifaceted search for nearby late-type objects, and this is the first installment of our search using purely photometric selection. The goal of this work is a determination of the low-mass star and brown dwarf luminosity function in the infrared. Here we outline the construction of the sample, dubbed 2MU2, and present our first results, including the discovery of 186 M7–L6 dwarfs—47 of which are likely to be within 20 pc of the Sun. These results represent 66% of the ultracool candidates in our sample yet constitute a 127% increase in the number of ultracool dwarfs known within the volume searched (covering 40% of the sky out to 20 pc). In addition, we have identified 10 M4–M6.5 objects that are likely to be within 20 pc (or within 1 σ). Finally, based on these initial data, we present a preliminary luminosity function and discuss several interesting features of the partial sample presented here. Once our sample is complete, we will use our measured luminosity function to constrain the mass function of low-mass stars and brown dwarfs.


The Astronomical Journal | 2008

The ACS survey of globular clusters. V. Generating a comprehensive star catalog for each cluster

Jay Anderson; Ata Sarajedini; L. R. Bedin; Ivan R. King; Giampaolo Piotto; I. Neill Reid; Michael Hiram Siegel; Steven R. Majewski; Nathaniel E. Q. Paust; Antonio Aparicio; A. P. Milone; Brian Chaboyer; Alfred Rosenberg

The ACS Survey of Globular Clusters has used Hubble Space Telescopes Wide-Field Channel to obtain uniform imaging of 65 of the nearest globular clusters to provide an extensive homogeneous data set for a broad range of scientific investigations. The survey goals required not only a uniform observing strategy, but also a uniform reduction strategy. To this end, we designed a sophisticated software program to process the cluster data in an automated way. The program identifies stars simultaneously in the multiple dithered exposures for each cluster and measures them using the best available point-spread function models. We describe here in detail the programs rationale, algorithms, and output. The routine was also designed to perform artificial-star tests, and we ran a standard set of ~105 tests for each cluster in the survey. The catalog described here will be exploited in a number of upcoming papers and will eventually be made available to the public via the World Wide Web.The ACS Survey of Globular Clusters has used HSTs Wide-Field Channel to obtain uniform imaging of 65 of the nearest globular clusters to provide an extensive homogeneous dataset for a broad range of scientific investigations. The survey goals required not only a uniform observing strategy, but also a uniform reduction strategy. To this end, we designed a sophisticated software program to process the cluster data in an automated way. The program identifies stars simultaneously in the multiple dithered exposures for each cluster and measures them using the best available PSF models. We describe here in detail the programs rationale, algorithms, and output. The routine was also designed to perform artificial-star tests, and we run a standard set of ~10^5 tests for each cluster in the survey. The catalog described here will be exploited in a number of upcoming papers and will eventually be made available to the public via the world-wide web.

Collaboration


Dive into the I. Neill Reid's collaboration.

Top Co-Authors

Avatar

John E. Gizis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Davy Kirkpatrick

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelle L. Cruz

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Monet

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge