Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Nunes is active.

Publication


Featured researches published by I. Nunes.


Nuclear Fusion | 2004

ELM pace making and mitigation by pellet injection in ASDEX upgrade

P. T. Lang; G. D. Conway; T. Eich; L. Fattorini; O. Gruber; S. Günter; L. D. Horton; S. Kalvin; A. Kallenbach; M. Kaufmann; G. Kocsis; A. Lorenz; M. Manso; M. Maraschek; V. Mertens; J. Neuhauser; I. Nunes; W. Schneider; W. Suttrop; H. Urano

In ASDEX Upgrade, experimental efforts aim to establish pace making and mitigation of type-I edge localized modes (ELMs) in high confinement mode (H-mode) discharges. Injection of small size cryogenic deuterium pellets (~(1.4?mm)2 ? 0.2?mm ? 2.5 ? 1019?D) at rates up to 83?Hz imposed persisting ELM control without significant fuelling, enabling for investigations well inside the type-I ELM regime. The approach turned out to meet all required operational features. ELM pace making was realized with the driving frequency ranging from 1 to 2.8 times the intrinsic ELM frequency, the upper boundary set by hardware limits. ELM frequency enhancement by pellet pace making causes much less confinement reduction than by engineering means like heating, gas bleeding or plasma shaping. Confinement reduction is observed in contrast to the typical for engineering parameters. Matched discharges showed triggered ELMs ameliorated with respect to intrinsic counterparts while their frequency was increased. No significant differences were found in the ELM dynamics with the available spatial and temporal resolution. By breaking the close correlation of ELM frequency and plasma parameters, pace making allows the establishment of fELM as a free parameter giving enhanced operational headroom for tailoring H-mode scenarios with acceptable ELMs. Use was made of the pellet pace making tool in several successful applications in different scenarios. It seems that further reduction of the pellet mass could be possible, eventually resulting in less confinement reduction as well.


Nuclear Fusion | 2008

A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET

D. Moreau; M. Ariola; G. De Tommasi; L. Laborde; F. Piccolo; F. Sartori; T. Tala; L. Zabeo; A. Boboc; E. Bouvier; M. Brix; Jerzy H. Brzozowski; C. Challis; V. Cocilovo; V. Cordoliani; F. Crisanti; E. de la Luna; R. Felton; N. Hawkes; R. King; X. Litaudon; T. Loarer; J. Mailloux; M.-L. Mayoral; I. Nunes; E. Surrey; O. Zimmerman

Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters is being investigated on JET, in view of developing integrated control of advanced tokamak scenarios. This paper describes the new model-based profile controller which has been implemented during the 2006–2007 experimental campaigns. The controller aims to use the combination of heating and current drive (H&CD) systems—and optionally the poloidal field (PF) system—in an optimal way to regulate the evolution of plasma parameter profiles such as the safety factor, q(x), and gyro-normalized temperature gradient, ρ ∗ (x). In the first part of the paper, a technique for the experimental identification of a minimal dynamic plasma model is described, taking into account the physical structure and couplings of the transport equations, but making no quantitative assumptions on the transport coefficients or on their dependences. To cope with the high dimensionality of the state space and the large ratio between the time scales involved, the model identification procedure and the controller design both make use of the theory of singularly perturbed systems by means of a two-time-scale approximation. The second part of the paper provides the theoretical basis for the controller design. The profile controller is articulated around two composite feedback loops operating on the magnetic and kinetic time scales, respectively, and supplemented by a feedforward compensation of density variations. For any chosen set of target profiles, the closest self-consistent state achievable with the available actuators is uniquely defined. It is reached, with no steady state offset, through a near-optimal


Nuclear Fusion | 2013

Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

C. Giroud; G. Maddison; S. Jachmich; F. Rimini; M. N. A. Beurskens; I. Balboa; S. Brezinsek; R. Coelho; J. W. Coenen; L. Frassinetti; E. Joffrin; M. Oberkofler; M. Lehnen; Y. Liu; S. Marsen; K. McCormick; A. Meigs; R. Neu; B. Sieglin; G.J. van Rooij; G. Arnoux; P. Belo; M. Brix; M. Clever; I. Coffey; S. Devaux; D. Douai; T. Eich; James M. Flanagan; S. Grünhagen

This paper reports the impact on confinement and power load of the high-shape 2.5xa0MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.


Nuclear Fusion | 2009

Development of ITER 15 MA ELMy H-mode inductive scenario

C. Kessel; D.J. Campbell; Y. Gribov; G. Saibene; G. Ambrosino; R.V. Budny; T. A. Casper; M. Cavinato; H. Fujieda; R.J. Hawryluk; L. D. Horton; A. Kavin; R. Kharyrutdinov; F. Koechl; J.A. Leuer; A. Loarte; P. Lomas; T.C. Luce; V.E. Lukash; Massimiliano Mattei; I. Nunes; V. Parail; A. Polevoi; A. Portone; R. Sartori; A. C. C. Sips; P.R. Thomas; A.S. Welander; John C. Wesley

The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation.


Nuclear Fusion | 2012

Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas

C. Giroud; G. Maddison; K. McCormick; M. N. A. Beurskens; S. Brezinsek; S. Devaux; T. Eich; L. Frassinetti; W. Fundamenski; M. Groth; A. Huber; S. Jachmich; A. Järvinen; A. Kallenbach; K. Krieger; D. Moulton; S. Saarelma; H. Thomsen; S. Wiesen; A. Alonso; B. Alper; G. Arnoux; P. Belo; A. Boboc; A. M. Brett; M. Brix; I. Coffey; E. de la Luna; D. Dodt; P. de Vries

Experiments on JET with a carbon-fibre composite wall have explored the reduction of steady-state power load in an ELMy H-mode scenario at high Greenwald fraction similar to 0.8, constant power and close to the L to H transition. This paper reports a systematic study of power load reduction due to the effect of fuelling in combination with seeding over a wide range of pedestal density ((4-8) x 10(19) m(-3)) with detailed documentation of divertor, pedestal and main plasma conditions, as well as a comparative study of two extrinsic impurity nitrogen and neon. It also reports the impact of steady-state power load reduction on the overall plasma behaviour, as well as possible control parameters to increase fuel purity. Conditions from attached to fully detached divertor were obtained during this study. These experiments provide reference plasmas for comparison with a future JET Be first wall and an all W divertor where the power load reduction is mandatory for operation.


Nuclear Fusion | 2009

Experimental studies of ITER demonstration discharges

A. C. C. Sips; T. A. Casper; E. J. Doyle; G. Giruzzi; Y. Gribov; J. Hobirk; G. M. D. Hogeweij; L. D. Horton; A. Hubbard; Ian H. Hutchinson; S. Ide; A. Isayama; F. Imbeaux; G.L. Jackson; Y. Kamada; Charles Kessel; F. Köchl; P. Lomas; X. Litaudon; T.C. Luce; E. Marmar; Massimiliano Mattei; I. Nunes; N. Oyama; V. Parail; A. Portone; G. Saibene; R. Sartori; J. Stober; T. Suzuki

Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23–0.33 V m−1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4–4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept ≤1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.


Nuclear Fusion | 2005

Integrated Exhaust Scenarios with Actively Controlled ELMs

P. T. Lang; A. Kallenbach; J. Bucalossi; G. D. Conway; A. W. Degeling; R. Dux; T. Eich; L. Fattorini; O. Gruber; S. Günter; A. Herrmann; J. Hobirk; L. D. Horton; S. Kalvin; G. Kocsis; J. Lister; M. Manso; M. Maraschek; Y. R. Martin; P. J. McCarthy; V. Mertens; R. Neu; J. Neuhauser; I. Nunes; T. Pütterich; V. Rozhansky; R. Schneider; Wolfgang Schneider; I. Senichenkov; A. C. C. Sips

An integrated radiative high performance scenario has been established at ASDEX Upgrade based on simultaneous feedback control of the average divertor neutral particle and power flux in combination with a high, pellet induced frequency of edge localized modes (ELMs). This approach is fully compatible with the present tungsten wall coating covering about 65% of the plasma facing components and is intended for application in the envisaged full-tungsten experiment. In these experiments, divertor recycling and effective divertor temperature (derived from thermoelectric currents) were tuned by acting on fuel gas puff and argon injection rates. The ELM frequency (f(ELM)) was kept high by repetitive injection of small cryogenic deuterium pellets to avoid the radiative instabilities seen at low f(ELM) and high radiated power, and to control the ELM energy. No confinement loss is observed in this radiative type-I ELMy scenario with relatively flat density profiles. In contrast, similar type-III ELM scenarios achieved in hydrogen show a confinement loss of 25% as compared to the type-I phase. In parallel to pellets, alternative ELM trigger techniques have been investigated as well. Fast vertical plasma oscillations are able to synchronize the ELM frequency to values higher and lower than the intrinsic f(ELM), but remain to be tested in the integrated scenario. Supersonic gas injection showed better fuelling efficiencies than usual gas puffing but instantaneous ELM release has not been achieved. A particular experimental challenge for AUG conditions is to obtain a high pace making frequency, to establish scalings of confinement and energy loss as a function of controlled ELM frequency.


Nuclear Fusion | 2013

Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

M. N. A. Beurskens; L. Frassinetti; C. Challis; T.H. Osborne; P.B. Snyder; B. Alper; C. Angioni; C. Bourdelle; P. Buratti; F. Crisanti; E. Giovannozzi; C. Giroud; R. J. Groebner; J. Hobirk; I. Jenkins; E. Joffrin; M. Leyland; P. Lomas; P. Mantica; D. C. McDonald; I. Nunes; F. Rimini; S. Saarelma; I. Voitsekhovitch; P. de Vries; D. Zarzoso; Jet-Efda Contributors

The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have ?N???1.5?2, H98???1, whereas the hybrid plasmas have ?N???2.5?3, H98?<?1.5. The database study contains both low- (????0.2?0.25) and high-triangularity (????0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008?2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the ?98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09?0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfv?n Mach number as and again a reduced density dependence as n0.15?0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high ? operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20?30% for a wide range of ?N???1.5?3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ?tor?=?0.3.


Plasma Physics and Controlled Fusion | 2012

Improved Confinement in JET hybrid discharges

J. Hobirk; F. Imbeaux; F. Crisanti; P. Buratti; C. Challis; E. Joffrin; B. Alper; Y. Andrew; P. Beaumont; M. Beurskens; A. Boboc; A. Botrugno; M. Brix; G. Calabrò; I. Coffey; S. Conroy; O. Ford; D. Frigione; J. Garcia; C. Giroud; N. Hawkes; D. Howell; I. Jenkins; D. Keeling; M. Kempenaars; H. Leggate; Ph. Lotte; E. de la Luna; G. Maddison; P. Mantica

A new technique has been developed to produce plasmas with improved confinement relative to the H-98,H-y2 scaling law (ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database ITER Physics Basics Editors and ITER EDA 1999 Nucl. Fusion 39 2175) on the JET tokamak. In the mid-size tokamaks ASDEX upgrade and DIII-D heating during the current formation is used to produce a flat q-profile with a minimum close to 1. On JET this technique leads to q-profiles with similar minimum q but opposite to the other tokamaks not to an improved confinement state. By changing the method utilizing a faster current ramp with temporary higher current than in the flattop (current overshoot) plasmas with improved confinement (H-98,H-y2 = 1.35) and good stability (beta(N) approximate to 3) have been produced and extended to many confinement times only limited by technical constraints. The increase in H-98,H-y2-factor is stronger with more heating power as can be seen in a power scan. The q-profile development during the high power phase in JET is reproduced by current diffusion calculated by TRANSP and CRONOS. Therefore the modifications produced by the current overshoot disappear quickly from the edge but the confinement improvement lasts longer, in some cases up to the end of the heating phase.


Plasma Physics and Controlled Fusion | 2009

Pedestal width and ELM size identity studies in JET and DIII-D: implications for ITER

M. N. A. Beurskens; T.H. Osborne; L. D. Horton; L. Frassinetti; Richard J. Groebner; A.W. Leonard; P. Lomas; I. Nunes; S. Saarelma; P.B. Snyder; I. Balboa; B D Bray; Kristel Crombé; James M. Flanagan; C. Giroud; E. Giovannozzi; M. Kempenaars; N Kohen; A. Loarte; J. Lönnroth; E. de la Luna; G. Maddison; C. F. Maggi; D. C. McDonald; G.R. McKee; R. Pasqualotto; G. Saibene; R. Sartori; E. R. Solano; W. Suttrop

The dependence of the H-mode edge transport barrier width on normalized ion gyroradius (rho* = rho/a) in discharges with type I ELMs was examined in experiments combining data for the JET and DIII-D tokamaks. The plasma configuration as well as the local normalized pressure (beta), collisionality (nu*), Mach number and the ratio of ion and electron temperature at the pedestal top were kept constant, while rho* was varied by a factor of four. The width of the steep gradient region of the electron temperature (T-e) and density (n(e)) pedestals normalized to machine size showed no or only a weak trend with rho*. A rho(1/2) or rho(1) dependence of the pedestal width, given by some theoretical predictions, is not supported by the current experiments. This is encouraging for the pedestal scaling towards ITER as it operates at lower rho* than existing devices. Some differences in pedestal structure and ELM behaviour were, however, found between the devices; in the DIII-D discharges, the n(e) and T-e pedestal were aligned at high rho* but the ne pedestal shifted outwards in radius relative to T-e as rho* decreases, while on JET the profiles remained aligned while rho* was scanned by a factor of two. The energy loss at an ELM normalized to the pedestal energy increased from 10% to 40% as rho* increased by a factor of two in the DIII-D discharges but no such variation was observed in the case of JET. The measured pedestal pressures and widths were found to be consistent with the predictions from modelling based on peeling-ballooning stability theory, and are used to make projections towards ITER

Collaboration


Dive into the I. Nunes's collaboration.

Top Co-Authors

Avatar

L. Frassinetti

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Coffey

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jet-Efda Contributors

International Atomic Energy Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge