I. Ribosa
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. Ribosa.
Journal of Colloid and Interface Science | 2011
Anna Cornellas; Lourdes Pérez; Francesc Comelles; I. Ribosa; Angeles Manresa; M. Teresa Garcia
Two series of long-chain imidazolium and pyridinium based ionic liquids (1-alkyl-3-methylimidazolium and 1-alkylpyridinium bromides) were synthesised and the effect of the alkyl chain length and the nature of the cationic head group on micellization and antimicrobial activity of the ionic liquids (ILs) were investigated. Tensiometry, conductometry, spectrofluorimetry and PGSE-NMR were applied to study the self-aggregation of the amphiphilic ILs in aqueous solution. The ILs investigated displayed surface activity and the characteristic chain length dependence of the micellization process of surfactants. The antimicrobial activity was evaluated against Gram-negative and Gram-positive bacteria and fungi. ILs containing more than eight carbon atoms in the alkyl chain showed antimicrobial activity. Their efficiency as antimicrobial agents increased with the hydrophobicity of the amphiphilic cation being the C(14) homologous the most active compounds.
Environmental Pollution | 2001
María Teresa García-Abad García; I. Ribosa; T Guindulain; Joaquim Sánchez-Leal; Josep Vives-Rego
The effect of the alkyl chain of quaternary ammonium-based surfactants on their aquatic toxicity and aerobic biodegradability has been studied. Two families of monoalkylquats surfactants were selected: alkyl trimethyl ammonium and alkyl benzyl dimethyl ammonium halides. Acute toxicity tests on Daphnia magna and Photobacterium phosphoreum were carried out and EC50 values in the range of 0.1-1 mg/l were obtained for the two series of cationic surfactants. Although the substitution of a benzyl group for a methyl group increases the toxicity, an incremental difference in toxicity between homologs of different chain length were not observed. Biodegradability of the different homologs was determined not only in standard conditions but also in coastal water, both tests yielding similar results. An increase in the alkyl chain length or the substitution of a benzyl group for a methyl group reduces the biodegradation rate. The degradation of these compounds in coastal waters was associated with an increase in bacterioplankton density, suggesting that the degradation takes place because the compound is used as a growth substrate.
Langmuir | 2013
M. Teresa Garcia; I. Ribosa; Lourdes Pérez; Angeles Manresa; Francesc Comelles
Two series of long chain imidazolium- and pyridinium-based ionic liquids containing an ester functional group in the alkyl side chain, 3-methyl-1-alkyloxycarbonylmethylimidazolium bromides (C(n)EMeImBr) and 1-alkyloxycarbonylmethylpyridinium bromides (C(n)EPyrBr), were synthesized and their thermal stability, aggregation behavior in aqueous medium, and antimicrobial activity investigated. The introduction of an ester group decreased the thermal stability of the functionalized ILs compared to simple alkyl chain containing ILs (1-alkyl-3-methylimidazolium bromides and 1-alkylpyridinium bromides). Tensiometry, conductimetry, and spectrofluorimetry were applied to study the self-aggregation of the amphiphilic ILs in aqueous solution. The ILs investigated displayed surface activity and the characteristic chain length dependence of the micellization process of surfactants. As compared to simple alkyl chain containing ILs bearing the same hydrocarbon chain, ester-functionalized ILs possess higher adsorption efficiency (pC(20)) and significantly lower critical micelle concentration (cmc) and surface tension at the cmc (γ(cmc)), indicating that the incorporation of an ester group promotes adsorption at the air/water interface and micelle formation. The antimicrobial activity was evaluated against Gram-negative and Gram-positive bacteria and fungi. ILs containing more than eight carbon atoms in the alkyl chain showed antimicrobial activity. Their efficiency as antimicrobial agents increased with the hydrophobicity of the amphiphilic cation being the C(12) homologous the most active compounds. The incorporation of an ester group particularly increased the biological activity against fungi.
Chemosphere | 1999
María Teresa García-Abad García; E. Campos; J. Sánchez-Leal; I. Ribosa
The anaerobic biodegradability and toxicity to methanogenic gas production of different alkyl chain length homologs of quaternary ammonium based surfactants were examinated. Two series of these cationic surfactants were selected: alkyl trimethyl ammonium and alkyl benzyl dimethyl ammonium compounds. A simple anaerobic gas production test containing municipal digester solids as a source of anaerobic bacteria was used. Under the applied methanogenic conditions, the cationic surfactants tested showed a very poor primary biodegradation and no evidence of any extent of ultimate biodegradation was observed. The toxicity of quaternary ammonium based surfactants to methanogenic gas production decreased with increasing the alkyl chain length.
Chemosphere | 1997
M.T. Gamia; I. Ribosa; E. Campos; J. Sanchez Leal
Abstract The good application properties of the alkylpolyglucosides and the development of economical and efficient production processes have promoted an increasing usage of these surfactants. From the study of two ecological properties, biodegradability and toxicity, the environmental compatibility of these surfactants have been evaluated. Different alkylglucosides have been studied: pure n-alkylglucosides (C 8 C 12 ) and commercial alkylgtutxeides oligomeric mixtures. Total biodegradation was studied on both Ready Biodegradability tests and Simulation tests. Toxicity tests were carried out on both Daphnia magna and luminiscent bacteria ( Photobacteriram phasphoreum ). Results obtained in the study on the ecological properties of alkylpolyglucosides allow to conclude the environmental acceptability of this new class of nonionic surfactants.
Chemosphere | 2000
María Teresa García-Abad García; E. Campos; J. Sánchez-Leal; I. Ribosa
Anaerobic biodegradability and toxicity on anaerobic bacteria of di(hydrogenated tallow) dimethyl ammonium chloride (DHTDMAC) and two esterquats have been investigated. A batch test system containing municipal digester solids as a source of anaerobic bacteria, based on the method proposed by the ECETOC, has been applied. To evaluate the potential toxicity of such surfactants on anaerobic sludge, a co-substrate, an easily biodegradable compound in anaerobic conditions, has been added to the samples to test and the effects on biogas production have been determined. For the esterquats studied high biodegradation levels were obtained and no toxic effects on anaerobic bacteria were observed even at the highest concentrations tested, 100 and 200 mg C/l, respectively. On the contrary, DHTDMAC was not degradated at the same test conditions. However, no inhibitory effects on the biogas production were detected for this surfactant at concentrations <100 mg C/l.
Chemosphere | 2002
María Teresa García-Abad García; E. Campos; M Dalmau; I. Ribosa; J. Sánchez-Leal
Sorption of linear alkylbenzene sulfonates (LAS) on sludge particles from wastewater treatment plants was studied. The effect of alkyl chain length and the water hardness were investigated. Sorption on sludge increases with increasing alkyl chain length in the LAS molecules. The results are interpreted in terms of a hydrophobic bonding mechanism being the critical micelle concentration a good index of the surfactant hydrophobicity. The increase in free energy of adsorption for the addition of successive methylene groups to the alkyl chain was estimated as 2.4 kJ/mol. Water hardness clearly enhances the sorption of LAS homologues on sludge and seems to promote cooperative sorption at high surfactant and calcium ion concentrations. An empirical equation was provided that allow to estimate the partition coefficient between aqueous and solid phases for LAS homologues as a function of the alkyl chain length and the water hardness.
Colloids and Surfaces B: Biointerfaces | 2009
Rodrigo O. Brito; Eduardo F. Marques; Sandra G. Silva; Maria Luísa do Vale; Paula Gomes; Maria José Araújo; J. Enrique Rodríguez-Borges; Maria Rosa Infante; María Teresa García-Abad García; I. Ribosa; M.P. Vinardell; Montserrat Mitjans
The design of efficient liposomal systems for drug delivery is of considerable biomedical interest. In this context, vesicles prepared from cationic/anionic surfactants may offer several advantages, mainly due to their spontaneity in formation and long-term stability. There is also an impending need to produce less toxic, more biocompatible amphiphiles, while maintaining the desirable aggregation properties. In this work, we present data for acute toxicity to Daphnia magna (IC(50)), and potential ocular irritation (HC(50)) for some newly prepared ionic surfactants with dodecyl chains, derived from the amino acids tyrosine (Tyr), serine (Ser), hydroxyproline (Hyp) and lysine (Lys). The micellization behavior of the compounds, evaluated from surface tension measurements, is presented and compared to more conventional ionic amphiphiles. Two types of spontaneouly formed catanionic vesicles, composed either by a dodecyltrimethylammonium bromide (DTAB)/Lys-derivative and or Ser-/Lys-derivative mixture, have also been tested for their ecotoxicity and hemolytic potential. All the micelle-forming surfactants as well as the vesicle-containing mixtures are found to have lower ecotoxicity than the reference surfactant DTAB. Moreover, the results from hemolysis and hemoglobin denaturation tests show that the Tyr- and Lys-derivatives are moderately irritant, whereas the Hyp- and Ser- ones are just slightly irritant. Even more significantly, the vesicle-containing mixtures exhibit lower hemolytic activity than the neat surfactants, a positive result for their potential use in liposomal formulations.
Water Research | 2009
María Teresa García-Abad García; E. Campos; Agustí Marsal; I. Ribosa
Four types of commonly used sulphonate-based surfactants (alkane sulphonates, alpha-olefin sulphonates, sulphosuccinates and methyl ester sulphonates) were tested for their aerobic and anaerobic biodegradability as well as for their toxicity to Daphnia magna and Photobacterium phosphoreum to assess the effect of the surfactant structure on those properties. Aerobic biodegradation was evaluated by means of the CO2 headspace test and anaerobic biodegradation was assessed by a method based on the ECETOC test. All the surfactants tested were readily biodegraded under aerobic conditions. No clear effect of the surfactant structures on the toxicity to the aquatic organisms tested was found. The most significant differences in the surfactants studied were observed in their behaviour under anaerobic conditions. Alkane sulphonates, alpha-olefin sulphonates and methyl ester sulphonates were not mineralized in lab anaerobic digesters despite the fact that the last one showed a certain degree of primary degradation. Nevertheless, these surfactants did not significantly inhibit methanogenic activity at concentrations up to 15 g surfactant/kg dry sludge, a concentration that is much higher than the expected concentrations of these surfactants in real anaerobic digesters. Sulphosuccinates showed a high level of primary biodegradation in anaerobic conditions. However, linear alkyl sulphosuccinates were completely mineralized whereas branched alkyl sulphosuccinates achieved percentages of ultimate biodegradation < or =50%.
Colloids and Surfaces B: Biointerfaces | 2014
M. Teresa Garcia; I. Ribosa; Lourdes Pérez; Angeles Manresa; Francesc Comelles
Surface active amide-functionalized ionic liquids (ILs) consisting of a long alkyl chain (C6C14) connected to a polar head group (methylimidazolium or pyridinium cation) via an amide functional group were synthesized and their thermal stability, micellar properties and antimicrobial activity in aqueous solution investigated. The incorporation of an amide group increased the thermal stability of the functionalized ionic liquids compared to simple alkyl chain substituted ionic liquids. The surface activity and aggregation behaviour in aqueous solution of amide-functionalized ionic liquids were examined by tensiometry, conductivity and spectrofluorimetry. Amide-functionalized ILs displayed surface activity and their critical micelle concentration (cmc) in aqueous media decreased with the elongation of the alkyl side chain as occurs for typical surfactants. Compared to non-functionalized ILs bearing the same alkyl chain, ionic liquids with an amide moiety possess higher surface activity (pC20) and lower cmc values. The introduction of an amide group in the hydrophobic chain close to the polar head enhances adsorption at the air/water interface and micellization which could be attributed to the H-bonding in the headgroup region. The antimicrobial activity was evaluated against a panel of representative Gram-negative and Gram-positive bacteria and fungi. Amide-functionalized ILs with more than eight carbon atoms in the side chain showed broad antimicrobial activity. Antibacterial activities were found to increase with the alkyl chain length being the C12 homologous the most effective antimicrobial agents. The introduction of an amide group enhanced significantly the antifungal activity as compared to non-functionalized ILs.