Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. S. Konstantopoulos is active.

Publication


Featured researches published by I. S. Konstantopoulos.


The Astrophysical Journal | 2011

NEOWISE Observations of Near-Earth Objects: Preliminary Results

Amy K. Mainzer; T. Grav; James Monie Bauer; Joseph R. Masiero; Robert S. McMillan; Roc Michael Cutri; R. Walker; E. L. Wright; Peter R. M. Eisenhardt; D. J. Tholen; T. B. Spahr; Robert Jedicke; Larry Denneau; E. DeBaun; D. Elsbury; T. Gautier; S. Gomillion; E. Hand; W. Mo; J. Watkins; Ashlee Wilkins; Ginger L. Bryngelson; A. Del Pino Molina; S. Desai; M. Gómez Camus; S. L. Hidalgo; I. S. Konstantopoulos; Jeffrey A. Larsen; C. Maleszewski; M. Malkan

With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 μm, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The surveys uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 ± 19 NEAs larger than 1 km and 20,500 ± 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 ± 0.14 below 1.5 km. This power-law slope produces ~13,200 ± 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D ~ 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.


Monthly Notices of the Royal Astronomical Society | 2012

Stellar clusters in M83: formation, evolution, disruption and the influence of the environment

N. Bastian; Angela Adamo; Mark Gieles; E. Silva-Villa; H. J. G. L. M. Lamers; S. S. Larsen; Linda J. Smith; I. S. Konstantopoulos; Erik Zackrisson

We study the stellar cluster population in two adjacent fields in the nearby, face-on spiral galaxy M83 using multiwavelength Wide Field Camera 3/Hubble Space Telescope imaging. After automatic det ...


Monthly Notices of the Royal Astronomical Society | 2014

The SAMI Galaxy Survey: shocks and outflows in a normal star-forming galaxy

I-Ting Ho; Lisa J. Kewley; Michael A. Dopita; Anne M. Medling; James T. Allen; Joss Bland-Hawthorn; J. V. Bloom; Julia J. Bryant; Scott M. Croom; L. M. R. Fogarty; Michael Goodwin; Andrew W. Green; I. S. Konstantopoulos; Jon Lawrence; A. R. Lopez-Sanchez; Matt S. Owers; Samuel Richards; Rob Sharp

We demonstrate the feasibility and potential of using large integral field spectroscopic surveys to investigate the prevalence of galactic-scale outflows in the local Universe. Using integral field data from SAMI and the Wide Field Spectrograph, we study the nature of an isolated disk galaxy, SDSS J090005.05+000446.7 (z = 0.05386). In the integral field datasets, the galaxy presents skewed line profiles changing with position in the galaxy. The skewed line profiles are caused by different kinematic components overlapping in the line-of-sight direction. We perform spectral decomposition to separate the line profiles in each spatial pixel as combinations of (1) a narrow kinematic component consistent with HII regions, (2) a broad kinematic component consistent with shock excitation, and (3) an intermediate component consistent with shock excitation and photoionisation mixing. The three kinematic components have distinctly different velocity fields, velocity dispersions, line ratios, and electron densities. We model the line ratios, velocity dispersions, and electron densities with our MAPPINGS IV shock and photoionisation models, and we reach remarkable agreement between the data and the models. The models demonstrate that the different emission line properties are caused by major galactic outflows that introduce shock excitation in addition to photoionisation by star-forming activities. Interstellar shocks embedded in the outflows shock-excite and compress the gas, causing the elevated line ratios, velocity dispersions, and electron densities observed in the broad kinematic component. We argue from energy considerations that, with the lack of a powerful active galactic nucleus, the outflows are likely to be driven by starburst activities. Our results set a benchmark of the type of analysis that can be achieved by the SAMI Galaxy Survey on large numbers of galaxies.


Monthly Notices of the Royal Astronomical Society | 2015

The SAMI Galaxy Survey: Early Data Release

J. T. Allen; Scott M. Croom; I. S. Konstantopoulos; Julia J. Bryant; Rob Sharp; G. N. Cecil; L. M. R. Fogarty; Caroline Foster; Andrew W. Green; I-Ting Ho; Matt S. Owers; Adam L. Schaefer; Nicholas Scott; Amanda E. Bauer; Ivan K. Baldry; L. A. Barnes; Joss Bland-Hawthorn; J. V. Bloom; Sarah Brough; Matthew Colless; Luca Cortese; Warrick J. Couch; Michael J. Drinkwater; Simon P. Driver; Michael Goodwin; M. L. P. Gunawardhana; Elise Hampton; Andrew M. Hopkins; Lisa J. Kewley; Jon Lawrence

We present the Early Data Release of the Sydney–AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of _3400 low-redshift (z < 0:12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated datacubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All datacubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated datacubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9–1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0:0009, less than a fifth of a spaxel.


Monthly Notices of the Royal Astronomical Society | 2008

The early expansion of cluster cores

N. Bastian; Mark Gieles; Simon P. Goodwin; G. Trancho; Linda J. Smith; I. S. Konstantopoulos; Yu. N. Efremov

The observed properties of young star clusters, such as the core radius and luminosity profile, change rapidly during the early evolution of the clusters. Here we present observations of six young clusters in M51 where we derive their sizes using Hubble Space Telescope (HST) imaging and ages using deep Gemini-North spectroscopy. We find evidence for a rapid expansion of the cluster cores during the first 20 Myr of their evolution. We confirm this trend by including data from the literature of both Galactic and extragalactic embedded and young clusters, and possible mechanisms (rapid gas removal, stellar evolutionary mass loss and internal dynamical heating) are discussed. We explore the implications of this result, focussing on the fact that clusters were more concentrated in the past, implying that their stellar densities were much higher and relaxation times (trelax) correspondingly shorter. Thus, when estimating if a particular cluster is dynamically relaxed (i.e. when determining if a cluster’s mass segregation is due to primordial or dynamical processes), the current relaxation time is only an upper limit, with trelax likely being significantly shorter in the past.


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy And Mass Assembly (GAMA): mass–size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology

Rebecca Lange; Simon P. Driver; Aaron S. G. Robotham; Lee S. Kelvin; Alister W. Graham; Mehmet Alpaslan; Stephen K. Andrews; Ivan K. Baldry; Steven P. Bamford; Joss Bland-Hawthorn; Sarah Brough; Michelle E. Cluver; Christopher J. Conselice; Luke J. M. Davies; Boris Haeussler; I. S. Konstantopoulos; Jon Loveday; Amanda J. Moffett; Peder Norberg; Steven Phillipps; Edward N. Taylor; A. R. Lopez-Sanchez; Stephen M. Wilkins

We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<1010M⊙) the Sersic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 1010M⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sersic light profile fitting (using GALFIT3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures.


Monthly Notices of the Royal Astronomical Society | 2015

The SAMI Galaxy Survey: cubism and covariance, putting round pegs into square holes

Rob Sharp; J. T. Allen; L. M. R. Fogarty; Scott M. Croom; Luca Cortese; Andrew W. Green; J. Nielsen; Samuel Richards; Nicholas Scott; Edward N. Taylor; Luke A. Barnes; Amanda E. Bauer; Michael N. Birchall; Joss Bland-Hawthorn; J. V. Bloom; Sarah Brough; Julia J. Bryant; Gerald Cecil; Matthew Colless; Warrick J. Couch; Michael J. Drinkwater; S. Driver; Caroline Foster; Michael Goodwin; M. L. P. Gunawardhana; I-Ting Ho; Elise Hampton; Andrew M. Hopkins; Heath Jones; I. S. Konstantopoulos

We present a methodology for the regularization and combination of sparse sampled and irregularly gridded observations from fibre-optic multiobject integral field spectroscopy. The approach minimizes interpolation and retains image resolution on combining subpixel dithered data. We discuss the methodology in the context of the Sydney–AAO multiobject integral field spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral field spectroscopy across a 1° diameter field of view. The SAMI Galaxy Survey is targeting ∼3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral field bundles results in only a 10 per cent degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting data cubes which retains 90 per cent of the covariance information while incurring only a modest increase in the survey data volume.


The Astrophysical Journal | 2009

THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. I. DYNAMICS OF THE DISK AND INNER-WIND*

M. S. Westmoquette; Linda J. Smith; J. S. Gallagher; G. Trancho; N. Bastian; I. S. Konstantopoulos

We present Gemini-North GMOS-IFU observations of the central starburst clumps and inner wind of M82, together with WIYN DensePak IFU observations of the inner 2 × 0.9 kpc of the disk. These cover the emission lines of Hα, [N II], [S II], and [S III] at a spectral resolution of 45-80 km s–1. The high signal-to-noise of the data is sufficient to accurately decompose the emission line profiles into multiple narrow components (FWHM ~ 30-130 km s–1) superimposed on a broad (FWHM ~ 150-350 km s–1) feature. This paper is the first of a series examining the optical structure of M82s disk and inner wind; here we focus on the ionized gaseous and stellar dynamics and present maps of the relevant emission line properties. Our observations show that ionized gas in the starburst core of M82 is dynamically complex with many overlapping expanding structures located at different radii. Localised line splitting of up to 100 km s–1 in the narrow component is associated with expanding shells of compressed, cool, photoionized gas at the roots of the superwind outflow. We have been able to associate some of this inner-wind gas with a distinct outflow channel characterised by its dynamics and gas density patterns, and we discuss the consequences of this discovery in terms of the developing wind outflow. The broad optical emission line component is observed to become increasingly important moving outward along the outflow channel, and in general with increasing height above/below the plane. Following our recent work on the origins of this component, we associate it with turbulent gas in wind-clump interface layers and hence sites of mass loading, meaning that the turbulent mixing of cooler gas into the outflowing hot gas must become increasingly important with height, and provides powerful direct evidence for the existence of mass-loading over a large, spatially extended area reaching far into the inner wind. We discuss the consequences and implications of this. We confirm that the rotation axis of the ionized emission-line gas is offset from the stellar rotation axis and the photometric major axis by ~12°, not only within the nuclear regions but over the whole inner 2 kpc of the disk. This attests to the perturbations introduced from M82s past interactions within the M81 group. Finally, finding a turn-over in the stellar and ionized gas rotation curves on both sides of the galaxy indicates that our sight line, in places, extends at least half way through disk, and conflicts with the high levels of obscuration usually associated with the nuclear regions of M82.


The Astrophysical Journal | 2013

SHOCK-ENHANCED C+ EMISSION AND THE DETECTION OF H2O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL

P. N. Appleton; Pierre Guillard; F. Boulanger; Michelle E. Cluver; P. Ogle; E. Falgarone; G. Pineau des Forêts; Ewan O'Sullivan; P.-A. Duc; S. C. Gallagher; Yu Gao; Thomas Harold Jarrett; I. S. Konstantopoulos; Ute Lisenfeld; S. Lord; N. Lu; B. W. Peterson; Curtis Struck; E. Sturm; Richard J. Tuffs; I. Valchanov; P. van der Werf; K. C. Xu

We present the first Herschel spectroscopic detections of the [OI]63µm and [CII]158µm fine-structure transitions, and a single para-H_2O line from the 35 x 15 kpc^2 shocked intergalactic filament in Stephans Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (> 1000 km s^(-1)) luminous [CII] line profiles, as well as fainter [OI]63µm emission. SPIRE FTS observations reveal water emission from the p-H_2O (1_(11)-0_(00)) transition at several positions in the filament, but no other molecular lines. The H_2O line is narrow, and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [CII]/PAH_(tot) and [CII]/FIR ratios are too large to be explained by normal photo-electric heating in PDRs. HII region excitation or X-ray/Cosmic Ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [CII], [OI] and warm H_2 line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the IGM is dissipated to small scales and low-velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [CII]/[OI] ratio, and the relatively high [CII]/H_2 ratios observed. The discovery that [CII] emission can be enhanced, in large-scale turbulent regions in collisional environments has implications for the interpretation of [CII] emission in high-z galaxies.


The Astrophysical Journal | 2009

A Spectroscopic Census of the M82 Stellar Cluster Population

I. S. Konstantopoulos; N. Bastian; Linda J. Smith; M. S. Westmoquette; G. Trancho; J. S. Gallagher

We present a spectroscopic study of the stellar cluster population of M82, the archetype starburst galaxy, based primarily on new Gemini-North multi-object spectroscopy of 49 star clusters. These observations constitute the largest to date spectroscopic dataset of extragalactic young clusters, giving virtually continuous coverage across the galaxy; we use these data to deduce information about the clusters as well as the M82 post-starburst disk and nuclear starburst environments. Spectroscopic age-dating places clusters in the nucleus and disk between (7, 15) and (30, 270) Myr, with distribution peaks at ~10 and ~140 Myr respectively. We find cluster radial velocities in the range (-160, 220) km/s (wrt the galaxy centre) and line of sight Na I D interstellar absorption line velocities in (-75, 200) km/s, in many cases entirely decoupled from the clusters. As the disk cluster radial velocities lie on the flat part of the galaxy rotation curve, we conclude that they comprise a regularly orbiting system. Our observations suggest that the largest part of the population was created as a result of the close encounter with M81 ~220 Myr ago. Clusters in the nucleus are found in solid body rotation on the bar. The possible detection of WR features in their spectra indicates that cluster formation continues in the central starburst zone. We also report the potential discovery of two old populous clusters in the halo of M82, aged >8 Gyr. Using these measurements and simple dynamical considerations, we derive a toy model for the invisible physical structure of the galaxy, and confirm the existence of two dominant spiral arms.

Collaboration


Dive into the I. S. Konstantopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Goodwin

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matt S. Owers

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Brough

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

N. Bastian

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Jon Lawrence

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Luca Cortese

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge