Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Valtchanov is active.

Publication


Featured researches published by I. Valtchanov.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel ATLAS

Stephen Anthony Eales; Loretta Dunne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; R. J. Ivison; M. J. Jarvis; Guilaine Lagache; Steve Maddox; M. Negrello; S. Serjeant; M. A. Thompson; E. van Kampen; A. Amblard; Paola Andreani; M. Baes; A. Beelen; G. J. Bendo; Dominic J. Benford; Frank Bertoldi; James J. Bock; D. G. Bonfield; A. Boselli; C. Bridge; V. Buat; D. Burgarella; R. Carlberg; A. Cava; P. Chanial

The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.


Science | 2010

The detection of a population of submillimeter-bright, strongly lensed galaxies

M. Negrello; R. Hopwood; G. De Zotti; A. Cooray; A. Verma; J. J. Bock; David T. Frayer; M. A. Gurwell; A. Omont; R. Neri; H. Dannerbauer; L. Leeuw; Elizabeth J. Barton; Jeff Cooke; S. Kim; E. da Cunha; G. Rodighiero; P. Cox; D. G. Bonfield; M. J. Jarvis; S. Serjeant; R. J. Ivison; Simon Dye; I. Aretxaga; David H. Hughes; E. Ibar; Frank Bertoldi; I. Valtchanov; Stephen Anthony Eales; Loretta Dunne

Through a Lens Brightly Astronomical sources detected in the submillimeter range are generally thought to be distant, dusty galaxies undergoing a vigorous burst of star formation. They can be detected because the dust absorbs the light from stars and reemits it at longer wavelengths. Their properties are still difficult to ascertain, however, because the combination of interference from dust and the low spatial resolution of submillimeter telescopes prevents further study at other wavelengths. Using data from the Herschel Space Telescope, Negrello et al. (p. 800) showed that by searching for the brightest sources in a wide enough area in the sky it was possible to detect gravitationally lensed submillimeter galaxies with nearly full efficiency. Gravitational lensing occurs when the light of an astronomical object is deflected by a foreground mass. This phenomenon increases the apparent brightness and angular size of the lensed objects, making it easier to study sources that would be otherwise too faint to probe. Data from the Herschel Space Observatory unveils distant, dusty galaxies invisible to optical telescopes. Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.


Astronomy and Astrophysics | 2010

HerMES: The SPIRE confusion limit

H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.


Astronomy and Astrophysics | 2010

Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3

R. J. Ivison; A. M. Swinbank; B. M. Swinyard; Ian Smail; C. P. Pearson; D. Rigopoulou; E. T. Polehampton; J.-P. Baluteau; M. J. Barlow; A. W. Blain; J. J. Bock; D. L. Clements; K. E. K. Coppin; A. Cooray; A. L. R. Danielson; Eli Dwek; A. C. Edge; A. Franceschini; T. Fulton; J. Glenn; Matthew Joseph Griffin; Kate Gudrun Isaak; S. J. Leeks; Tanya Lim; David A. Naylor; S. J. Oliver; M. J. Page; I. Perez Fournon; M. Rowan-Robinson; G. Savini

We present a detailed analysis of the far-infrared (-IR) properties of the bright, lensed, z = 2.3, submillimetre-selected galaxy (SMG), SMMu2009J2135-0102 (hereafter SMMu2009J2135), using new observations with Herschel, SCUBA-2 and the Very Large Array (VLA). These data allow us to constrain the galaxys spectral energy distribution (SED) and show that it has an intrinsic rest-frame 8-1000-μm luminosity, Lbol, of (2.3±0.2) × 1012 and a likely star-formation rate (SFR) of ~400 yr-1. The galaxy sits on the far-IR/radio correlation for far-IR-selected galaxies. At 70 μm, the SED can be described adequately by dust components with dust temperatures, Td ~ 30 and 60 k. Using SPIREs Fourier- transform spectrometer (FTS) we report a detection of the [C ii]u2009158 μm cooling line. If the [C ii], CO and far-IR continuum arise in photo-dissociation regions (PDRs), we derive a characteristic gas density, n ~ 103 cm-3, and a far-ultraviolet (-UV) radiation field, G0, 103× stronger than the Milky Way. L[CII]/Lbol is significantly higher than in local ultra-luminous IR galaxies (ULIRGs) but similar to the values found in local star-forming galaxies and starburst nuclei. This is consistent with SMMu2009J2135 being powered by starburst clumps distributed across ~2 kpc, evidence that SMGs are not simply scaled-up ULIRGs. Our results show that SPIREs FTS has the ability to measure the redshifts of distant, obscured galaxies via the blind detection of atomic cooling lines, but it will not be competitive with ground-based CO-line searches. It will, however, allow detailed study of the integrated properties of high-redshift galaxies, as well as the chemistry of their interstellar medium (ISM), once more suitably bright candidates have been found.


Astronomy and Astrophysics | 2010

HerMES: Far infrared properties of known AGN in the HerMES fields

E. Hatziminaoglou; A. Omont; J. A. Stevens; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Simon Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn

Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.


Nature | 2012

The suppression of star formation by powerful active galactic nuclei.

M. J. Page; M. Symeonidis; J. D. Vieira; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. N. Dubois; James Dunlop; Eli Dwek; Simon Dye; Stephen Anthony Eales; David Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear

The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.


Monthly Notices of the Royal Astronomical Society | 2010

HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations

J. Glenn; A. Conley; M. Béthermin; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; James J. Bock; A. Boselli; V. Buat; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; T. P. Ellsworth-Bowers; M. Fox; A. Franceschini; Walter Kieran Gear; Matthew Joseph Griffin; M. Halpern; Evanthia Hatziminaoglou; E. Ibar

Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 μm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam.


The Astrophysical Journal | 2012

A redshift survey of Herschel far-infrared selected starbursts and implications for obscured star formation

Caitlin M. Casey; S. Berta; M. Béthermin; James J. Bock; C. Bridge; J. Budynkiewicz; D. Burgarella; Edward L. Chapin; S. C. Chapman; D. L. Clements; A. Conley; Christopher J. Conselice; A. Cooray; D. Farrah; Evanthia Hatziminaoglou; R. J. Ivison; E. Le Floc'h; D. Lutz; G. Magdis; B. Magnelli; Seb Oliver; Mat Page; F. Pozzi; D. Rigopoulou; L. Riguccini; I. G. Roseboom; D. B. Sanders; Douglas Scott; N. Seymour; I. Valtchanov

We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 μm, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z ~ 5. We measure more significant disagreement between photometric and spectroscopic redshifts (〈Δz/(1 + z_(spec))〉 = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 μm flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q_(IR) ∝(1 + z)^(–0.30±0.02) at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 μm extrapolations of the LIRG, ULIRG, and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z » 0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.


Nature | 2011

Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10 11 solar masses

A. Amblard; A. Cooray; Paolo Serra; B. Altieri; V. Arumugam; H. Aussel; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; David Elbaz; D. Farrah; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou; E. Ibar; Kate Gudrun Isaak

The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500u2009μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, Mmin, such that log10[Mmin/M⊙] = at 350u2009μm, where M⊙ is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.


Monthly Notices of the Royal Astronomical Society | 2011

The first release of data from the Herschel ATLAS: the SPIRE images★

Enzo Pascale; Robbie Richard Auld; Aliakbar Dariush; Loretta Dunne; Stephen Anthony Eales; Steve Maddox; P. Panuzzo; Michael Pohlen; D. J. B. Smith; S. Buttiglione; A. Cava; D. L. Clements; A. Cooray; Simon Dye; G. De Zotti; J. Fritz; R. Hopwood; E. Ibar; R. J. Ivison; M. J. Jarvis; L. Leeuw; M. López-Caniego; E. Rigby; G. Rodighiero; D. Scott; Matthew William L. Smith; P. Temi; M. Vaccari; I. Valtchanov

We have reduced the data taken with the Spectral and Photometric Imaging Receiver (SPIRE) photometer on board the Herschel Space Observatory in the Science Demonstration Phase (SDP) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We describe the data reduction, which poses specific challenges, both because of the large number of detectors which can have noise correlated in each array, and because only two scans are made for each region. We implement effective solutions to process the bolometric timelines into maps, and show that correlations among detectors are negligible, and that the photometer is stable on time scales up to 250 s. This is longer than the time the telescope takes to cross the observed sky region, and it allows us to use naive binning methods for an optimal reconstruction of the sky emission. The maps have equal contribution of confusion and white instrumental noise, and the former is estimated to 5.3, 6.4 and 6.7 mJy beam−1 (1σ), at 250, 350 and 500 μm, respectively. This pipeline is used to reduce other H-ATLAS observations, as they became available, and we discuss how it can be used with the optimal map maker implemented in the Herschel Interactive Processing Environment (HIPE), to improve computational efficiency and stability. The SDP data set is available from http://www.h-atlas.org/.

Collaboration


Dive into the I. Valtchanov's collaboration.

Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. W. Blain

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

C. D. Dowell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Conley

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar

A. Cava

University of Geneva

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Arumugam

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge