I Van der Auwera
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I Van der Auwera.
British Journal of Cancer | 2010
I Van der Auwera; Dieter Peeters; Ina Benoy; Hilde Elst; S Van Laere; A Prové; H Maes; P. Huget; P. van Dam; P. Vermeulen; L. Dirix
Background:The detection, enumeration and isolation of circulating tumour cells (CTCs) have considerable potential to influence the clinical management of patients with breast cancer. There is, however, substantial variability in the rates of positive samples using existing detection techniques. The lack of standardisation of technology hampers the implementation of CTC measurement in clinical routine practice.Methods:This study was designed to directly compare three techniques for detecting CTCs in blood samples taken from 76 patients with metastatic breast cancer (MBC) and from 20 healthy controls: the CellSearch CTC System, the AdnaTest Breast Cancer Select/Detect and a previously developed real-time qRT-PCR assay for the detection of CK-19 and mammaglobin transcripts.Results:As a result, 36% of patients with MBC were positive by the CellSearch System, 22% by the AdnaTest, 26% using RT–PCR for CK-19 and 54% using RT–PCR for mammaglobin. Samples were significantly more likely to be positive for at least one mRNA marker using RT–PCR than using the CellSearch System (P=0.001) or the AdnaTest (P<0.001).Conclusion:We observed a substantial variation in the detection rates of CTCs in blood from breast cancer patients using three different techniques. A higher rate of positive samples was observed using a combined qRT-PCR approach for CK-19 and mammaglobin, which suggests that this is currently the most sensitive technique for detecting CTCs.
British Journal of Cancer | 2004
F. Stessels; G. Van den Eynden; I Van der Auwera; Rodrigo Salgado; E Van den Heuvel; Adrian L. Harris; David G. Jackson; C. Colpaert; E. Van Marck; L. Dirix; P. Vermeulen
Although angiogenesis is a prerequisite for the growth of most human solid tumours, alternative mechanisms of vascularisation can be adopted. We have previously described a non-angiogenic growth pattern in liver metastases of colorectal adenocarcinomas (CRC) in which tumour cells replace hepatocytes at the tumour–liver interface, preserving the liver architecture and co-opting the sinusoidal blood vessels. The aim of this study was to determine whether this replacement pattern occurs during liver metastasis of breast adenocarcinomas (BC) and whether the lack of an angiogenic switch in such metastases is due to the absence of hypoxia and subsequent vascular fibrinogen leakage. The growth pattern of 45 BC liver metastases and 28 CRC liver metastases (73 consecutive patients) was assessed on haematoxylin- and eosin-stained tissue sections. The majority of the BC liver metastases had a replacement growth pattern (96%), in contrast to only 32% of the CRC metastases (P<0.0001). The median carbonic anhydrase 9 (CA9) expression (M75 antibody), as a marker of hypoxia, (intensity × % of stained tumour cells) was 0 in the BC metastases and 53 in the CRC metastases (P<0.0001). There was CA9 expression at the tumour–liver interface in only 16% of the BC liver metastases vs 54% of the CRC metastases (P=0.002). There was fibrin (T2G1 antibody) at the tumour-liver interface in only 21% of the BC metastases vs 56% of the CRC metastases (P=0.04). The median macrophage count (Chalkley morphometry; KP-1 anti-CD68 antibody) at the interface was 4.3 and 7.5, respectively (P<0.0001). Carbonic anhydrase 9 score and macrophage count were positively correlated (r=0.42; P=0.002) in all metastases. Glandular differentiation was less in the BC liver metastases: 80% had less than 10% gland formation vs only 7% of the CRC metastases (P<0.0001). The liver is a densely vascularised organ and can host metastases that exploit this environment by replacing the hepatocytes and co-opting the vasculature. Our findings confirm that a non-angiogenic pattern of liver metastasis indeed occurs in BC, that this pattern of replacement growth is even more prevalent than in CRC, and that the process induces neither hypoxia nor vascular leakage.
British Journal of Cancer | 2006
G. Van den Eynden; I Van der Auwera; S Van Laere; C. Colpaert; P. van Dam; L. Dirix; P. Vermeulen; E. Van Marck
Recently, peritumoural (lympho)vascular invasion, assessed on haematoxylin–eosin (HE)-stained slides, was added to the St Gallen criteria for adjuvant treatment of patients with operable breast cancer (BC). New lymphatic endothelium-specific markers, such as D2-40, make it possible to distinguish between blood (BVI) and lymph vessel invasion (LVI). The aim of this prospective study was to quantify and compare BVI and LVI in a consecutive series of patients with BC. Three consecutive sections of all formalin-fixed paraffin-embedded tissue blocks of 95 BC resection specimens were (immuno)histochemically stained in a fixed order: HE, anti-CD34 (pan-endothelium) and anti-D2-40 (lymphatic endothelium) antibodies. All vessels with vascular invasion were marked and relocated on the corresponding slides. Vascular invasion was assigned LVI (CD34⊕ or ⊖/D2-40⊕) or BVI (CD34⊕/D2-40⊖) and intra- (contact with tumour cells or desmoplastic stroma) or peritumoural. The number of vessels with LVI and BVI as well as the number of tumour cells per embolus were counted. Results were correlated with clinico-pathological variables. Sixty-six (69.5%) and 36 (37.9%) patients had, respectively, LVI and BVI. The presence of ‘vascular’ invasion was missed on HE in 20% (peritumourally) and 65% (intratumourally) of cases. Although LVI and BVI were associated intratumourally (P=0.02), only peritumoural LVI, and not BVI, was associated with the presence of lymph node (LN) metastases (pperi=0.002). In multivariate analysis, peritumoural LVI was the only independent determinant of LN metastases. Furthermore, the number of vessels with LVI was larger than the number of vessels with BVI (P=0.001) and lymphatic emboli were larger than blood vessel emboli (P=0.004). We demonstrate that it is possible to distinguish between BVI and LVI in BC specimens using specific lymphatic endothelium markers. This is important to study the contribution of both processes to BC metastasis. Furthermore, immunohistochemical detection of lymphovascular invasion might be of value in clinical practice.
British Journal of Cancer | 2010
I Van der Auwera; Ridha Limame; P. van Dam; P. Vermeulen; L. Dirix; S Van Laere
Background:MicroRNAs (miRNAs) are key regulators of gene expression. In this study, we explored whether altered miRNA expression has a prominent role in defining the inflammatory breast cancer (IBC) phenotype.Methods:We used quantitative PCR technology to evaluate the expression of 384 miRNAs in 20 IBC and 50 non-IBC samples. To gain understanding on the biological functions deregulated by aberrant miRNA expression, we looked for direct miRNA targets by performing pair-wise correlation coefficient analysis on expression levels of 10 962 messenger RNAs (mRNAs) and by comparing these results with predicted miRNA targets from TargetScan5.1.Results:We identified 13 miRNAs for which expression levels were able to correctly predict the nature of the sample analysed (IBC vs non-IBC). For these miRNAs, we detected a total of 17 295 correlated miRNA–mRNA pairs, of which 7012 and 10 283 pairs showed negative and positive correlations, respectively. For four miRNAs (miR-29a, miR-30b, miR-342-3p and miR-520a-5p), correlated genes were concordant with predicted targets. A gene set enrichment analysis on these genes demonstrated significant enrichment in biological processes related to cell proliferation and signal transduction.Conclusions:This study represents, to the best of our knowledge, the first integrated analysis of miRNA and mRNA expression in IBC. We identified a set of 13 miRNAs of which expression differed between IBC and non-IBC, making these miRNAs candidate markers for the IBC subtype.
Breast Cancer Research and Treatment | 2004
G. Van den Eynden; I Van der Auwera; S Van Laere; Cecile Colpaert; P. van Dam; Sofia D. Merajver; Celina G. Kleer; Adrian L. Harris; E. Van Marck; Luc Dirix; Peter B. Vermeulen
AbstractAims. Inflammatory breast cancer (IBC) is an aggressive subtype of breast cancer with poor prognosis. The mechanisms responsible for the aggressive clinical evolution are incompletely understood. We constructed a tissue microarray (TMA) and validated its use in translational IBC research. Differential expression of proteins that might play a role in causing the IBC phenotype was studied. Methods and results. A TMA containing 34 IBC and 41 non-stage matched non-IBC tumours was constructed. Five core biopsies were taken for each IBC and three cores for each non-IBC tumour. The TMA was validated using three approaches: (1) the excellent concordance between immunohistochemical results of the initial pathological examination and the results obtained with the TMA for ER, PR and HER2/neu (κ > 0.74); (2) the known differential expression between IBC and non-IBC for four bio-markers in IBC (ER, PR, p53 and HER2/neu) was confirmed (p < 0.01); (3) the HER2/neu status using three different antibodies (CB11, TAB250 and HercepTest) was highly concordant (κ > 0.75). Furthermore, the overexpression of E-Cadherin and RhoC GTPase in IBC (p < 0.05) was confirmed. We did not find a differential expression pattern for carbonic anhydrase IX (CA IX) and EGFR. Conclusions. Using different approaches, we have validated the use of our TMA for studying differential protein expression in IBC and non-IBC. We confirm the overexpression of E-Cadherin and RhoC GTPase in IBC. The lack of differential expression for CA IX and EGFR might suggest the pathways are equally utilised in both types of breast cancer.
British Journal of Cancer | 2009
I Van der Auwera; Hilde Elst; S Van Laere; H Maes; P. Huget; P. van Dam; E. Van Marck; P. Vermeulen; L. Dirix
Circulating tumour cells (CTC) and tumour-related methylated DNA in blood have been separately assessed for their utility as a marker for subclinical metastasis in breast cancer. However, no studies have looked into the relation between the both molecular markers in this type of cancer. In this study, we investigated the correlations between total/methylated DNA and CTC in the blood from metastatic breast cancer patients. We simultaneously obtained whole blood, plasma and serum samples from 80 patients and 20 controls. The CellSearch System was used to enumerate CTC in blood samples. Plasma total DNA levels were determined by a QPCR method. Sera were analysed by methylation-specific QPCR for three markers: adenomatous polyposis coli (APC), ras association domain family protein 1A (RASSF1A) and oestrogen receptor 1 (ESR1). Total DNA levels in patients were significantly increased when compared with controls (P<0.001) and correlated with the number of CTC (r=0.418, P<0.001). Hypermethylation of one or more genes was detected in 42 (53%) serum samples from breast cancer patients and in three (16%) serum samples from controls (P=0.003). APC was hypermethylated in 29%, RASSF1A in 35% and ESR1 in 20% of breast cancer cases. Detection of a methylated gene in serum was associated with the detection of CTC in blood (P=0.03). The detection of large amounts of circulating total/methylated DNA correlated with the presence of CTC in the blood from patients with breast cancer. This can be interpreted in two ways: (a) CTC are a potential source of circulating tumour-specific DNA; (b) high numbers of CTC and circulating methylated DNA are both a phenotypic feature of more aggressive tumour biology.
British Journal of Cancer | 2009
X. Trinh; W. Tjalma; P. Vermeulen; G. Van den Eynden; I Van der Auwera; S Van Laere; Jozien Helleman; E. M. J. J. Berns; L. Dirix; P. A. van Dam
Vascular endothelial growth factor (VEGF)-A inhibitors exhibit unseen high responses and toxicity in recurrent epithelial ovarian cancer suggesting an important role for the VEGF/VEGFR pathway. We studied the correlation of VEGF signalling and AKT/mTOR signalling. Using a tissue microarray of clinical samples (N=86), tumour cell immunohistochemical staining of AKT/mTOR downstream targets, pS6 and p4E-BP1, together with tumour cell staining of VEGF-A and pVEGFR2 were semi-quantified. A correlation was found between the marker for VEGFR2 activation (pVEGFR2) and a downstream target of AKT/mTOR signalling (pS6) (R=0.29; P=0.002). Additional gene expression analysis in an independent cDNA microarray dataset (N=24) showed a negative correlation (R=−0.73, P<0.0001) between the RPS6 and the VEGFR2 gene, which is consistent as the gene expression and phosphorylation of S6 is inversely regulated. An activated tumour cell VEGFR2/AKT/mTOR pathway was associated with increased incidence of ascites (χ2, P=0.002) and reduced overall survival of cisplatin–taxane-based patients with serous histology (N=32, log-rank test, P=0.04). These data propose that VEGF-A signalling acts on tumour cells as a stimulator of the AKT/mTOR pathway. Although VEGF-A inhibitors are classified as anti-angiogenic drugs, these data suggest that the working mechanism has an important additional modality of targeting the tumour cells directly.
British Journal of Cancer | 2007
S Van Laere; I Van der Auwera; G. Van den Eynden; P. van Dam; E. Van Marck; P. Vermeulen; L. Dirix
Activation of NF-κB in inflammatory breast cancer (IBC) is associated with loss of estrogen receptor (ER) expression, indicating a potential crosstalk between NF-κB and ER. In this study, we examined the activation of NF-κB in IBC and non-IBC with respect to ER and EGFR and/or ErbB2 expression and MAPK hyperactivation. A qRT–PCR based ER signature was evaluated in tumours with and without transcriptionally active NF-κB, as well as correlated with the expression of eight NF-κB target genes. Using a combined ER/NF-κB signature, hierarchical clustering was executed. Hyperactivation of MAPK was investigated using a recently described MAPK signature (Creighton et al, 2006), and was linked to tumour phenotype, ER and EGFR and/or ErbB2 overexpression. The expression of most ER-modulated genes was significantly elevated in breast tumours without transcriptionally active NF-κB. In addition, the expression of most ER-modulated genes was significantly anticorrelated with the expression of most NF-κB target genes, indicating an inverse correlation between ER and NF-κB activation. Clustering using the combined ER and NF-κB signature revealed one cluster mainly characterised by low NF-κB target gene expression and a second one with elevated NF-κB target gene expression. The first cluster was mainly characterised by non-IBC specimens and IHC ER+ breast tumours (13 out of 18 and 15 out of 18 respectively), whereas the second cluster was mainly characterised by IBC specimens and IHC ER− breast tumours (12 out of 19 and 15 out of 19 respectively) (Pearson χ2, P<0.0001 and P<0.0001 respectively). Hyperactivation of MAPK was associated with both ER status and tumour phenotype by unsupervised hierarchical clustering using the MAPK signature and was significantly reflected by overexpression of EGFR and/or ErbB2. NF-κB activation is linked to loss of ER expression and activation in IBC and in breast cancer in general. The inverse correlation between NF-κB activation and ER activation is due to EGFR and/or ErbB2 overexpression, resulting in NF-κB activation and ER downregulation.
British Journal of Cancer | 2007
S Van Laere; I Van der Auwera; G. Van den Eynden; P Van Hummelen; P. van Dam; E. Van Marck; P. Vermeulen; L. Dirix
The present study aims at a platform-independent confirmation of previously obtained cDNA microarray results on inflammatory breast cancer (IBC) using Affymetrix chips. Gene-expression data of 19 IBC and 40 non-IBC specimens were subjected to clustering and principal component analysis. The performance of a previously identified IBC signature was tested using clustering and gene set enrichment analysis. The presence of different cell-of-origin subtypes in IBC was investigated and confirmed using immunohistochemistry on a TMA. Differential gene expression was analysed using SAM and topGO was used to identify the fingerprints of a pro-metastatic-signalling pathway. IBC and non-IBC have distinct gene-expression profiles. The differences in gene expression between IBC and non-IBC are captured within an IBC signature, identified in a platform-independent manner. Part of the gene-expression differences between IBC and non-IBC are attributable to the differential presence of the cell-of-origin subtypes, since IBC primarily segregated into the basal-like or ErbB2-overexpressing group. Strikingly, IBC tumour samples more closely resemble the gene-expression profile of T1/T2 tumours than the gene-expression profile or T3/T4 tumours. We identified the insulin-like growth factor-signalling pathway, potentially contributing to the biology of IBC. Our previous results have been validated in a platform-independent manner. The distinct biological behaviour of IBC is reflected in a distinct gene-expression profile. The fact that IBC tumours are quickly arising tumours might explain the close resemblance of the IBC gene-expression profile to the expression profile of T1/T2 tumours.
British Journal of Cancer | 2005
G. Van den Eynden; I Van der Auwera; S Van Laere; C. Colpaert; Helen Turley; Adrian L. Harris; P. van Dam; L. Dirix; P. Vermeulen; E. Van Marck
Hypoxia and angiogenesis are important factors in breast cancer progression. Little is known of hypoxia and angiogenesis in lymph node metastases of breast cancer. The aim of this study was to quantify hypoxia, by hypoxia-induced marker expression levels, and angiogenesis, by endothelial cell proliferation, comparing primary breast tumours and axillary lymph node metastases. Tissue sections of the primary tumour and a lymph node metastasis of 60 patients with breast cancer were immunohistochemically stained for the hypoxia-markers carbonic anhydrase 9 (CA9), hypoxia-inducible factor-1α (Hif-1α) and DEC-1 and for CD34/Ki-67. Endothelial cell proliferation fraction (ECP%) and tumour cell proliferation fraction (TCP%) were assessed. On haematoxylin–eosin stain, the growth pattern and the presence of a fibrotic focus were assessed. Hypoxia-marker expression, ECP% and TCP% in primary tumours and in lymph node metastases were correlated to each other and to clinico-pathological variables. Median ECP% and TCP% in primary tumours and lymph node metastases were comparable (primary tumours: ECP%=4.02, TCP%=19.54; lymph node metastases: ECP%=5.47, TCP%=21.26). ECP% correlated with TCP% (primary tumours: r=0.63, P<0.001; lymph node metastases: r=0.76, P<0.001). CA9 and Hif-1α expression were correlated (primary tumours P=0.005; lymph node metastases P<0.001). In primary tumours, CA9 and Hif-1α expression were correlated with DEC-1 expression (P=0.05), presence of a fibrotic focus (P<0.007) and mixed/expansive growth pattern (P<0.001). Primary tumours and lymph node metastases with CA9 or Hif-1α expression had a higher ECP% and TCP% (P<0.003); in primary tumours, mixed/expansive growth pattern and fibrotic focus were characterised by higher ECP% (P=0.03). Furthermore, between primary tumours and lymph node metastases a correlation was found for ECP%, TCP%, CA9 and Hif-1α expression (ECP% r=0.51, P<0.001; TCP r=0.77, P<0.001; CA9 and Hif-1α P<0.001). Our data demonstrate that the growth of breast cancer lymph node metastases is angiogenesis dependent and that angiogenesis and hypoxia in the primary tumour predict angiogenesis and hypoxia in the lymph node metastases. Together with previous findings in breast cancer liver metastases, which grow in 96% of cases angiogenesis independently, these data suggest that both the intrinsic growth characteristics and angiogenic potential of breast cancer cells and the site-specific tumour microenvironment determine angiogenesis and hypoxia in breast cancer.