Iain Uings
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iain Uings.
Journal of Medicinal Chemistry | 2011
Chun-wa Chung; Hervé Coste; Julia H. White; Olivier Mirguet; Jonathan I. Wilde; Romain Luc Marie Gosmini; Chris Delves; Sylvie M. Magny; Robert Woodward; Stephen A. Hughes; Eric Boursier; Helen R. Flynn; Anne Marie Jeanne Bouillot; Paul Bamborough; Jean-Marie Brusq; Françoise J. Gellibert; Emma Jones; Alizon Riou; Paul Homes; Sandrine Martin; Iain Uings; Jérôme Toum; Catherine A. Clément; Anne-Bénédicte Boullay; Rachel L. Grimley; Florence M. Blandel; Rab K. Prinjha; Kevin Lee; Jorge Kirilovsky; Edwige Nicodeme
Epigenetic mechanisms of gene regulation have a profound role in normal development and disease processes. An integral part of this mechanism occurs through lysine acetylation of histone tails which are recognized by bromodomains. While the biological and structural characterization of many bromodomain containing proteins has advanced considerably, the therapeutic tractability of this protein family is only now becoming understood. This paper describes the discovery and molecular characterization of potent (nM) small molecule inhibitors that disrupt the function of the BET family of bromodomains (Brd2, Brd3, and Brd4). By using a combination of phenotypic screening, chemoproteomics, and biophysical studies, we have discovered that the protein-protein interactions between bromodomains and acetylated histones can be antagonized by selective small molecules that bind at the acetylated lysine recognition pocket. X-ray crystal structures of compounds bound into bromodomains of Brd2 and Brd4 elucidate the molecular interactions of binding and explain the precisely defined stereochemistry required for activity.
Journal of Medicinal Chemistry | 2013
Olivier Mirguet; Romain Luc Marie Gosmini; Jérôme Toum; Catherine A. Clément; Mélanie Barnathan; Jean-Marie Brusq; Jacqueline Elizabeth Mordaunt; Richard Martin Grimes; Miriam Crowe; Olivier Pineau; Myriam Ajakane; Alain Claude-Marie Daugan; Phillip Jeffrey; Leanne Cutler; Andrea Haynes; Nicholas Smithers; Chun-wa Chung; Paul Bamborough; Iain Uings; Antonia Lewis; Jason Witherington; Nigel James Parr; Rab K. Prinjha; Edwige Nicodeme
The bromo and extra C-terminal domain (BET) family of bromodomains are involved in binding epigenetic marks on histone proteins, more specifically acetylated lysine residues. This paper describes the discovery and structure-activity relationships (SAR) of potent benzodiazepine inhibitors that disrupt the function of the BET family of bromodomains (BRD2, BRD3, and BRD4). This work has yielded a potent, selective compound I-BET762 that is now under evaluation in a phase I/II clinical trial for nuclear protein in testis (NUT) midline carcinoma and other cancers.
European Journal of Immunology | 2002
Satoko Fujihara; Carol Ward; Ian Dransfield; Ronald T. Hay; Iain Uings; Brian Hayes; Stuart N. Farrow; Christopher Haslett; Adriano G. Rossi
Apoptosis renders eosinophils functionally effete and marks them for ‘silent’ removal from inflamed sites by macrophages. We show, for the first time, that eosinophils exposed to TNF‐α rapidly lose their cytoplasmic levels of IκBα, the inhibitory subunit of NF‐κB. Consequently, TNF‐α triggers NF‐κB mobilization from the cytoplasm to the nucleus, as determined by tracking the NF‐κB subunit p65 by immunofluorescence and Western blot analysis. Inhibition of TNF‐α‐mediated IκBα degradation and NF‐κB activation by gliotoxin or the proteasome inhibitor MG‐132 un‐masks the caspase‐dependent pro‐apoptotic properties of TNF‐α. In addition, cycloheximide similarly renders TNF‐α pro‐apoptotic, suggesting that NF‐κB activation controls the production of a protein(s) that protects eosinophils from the cytotoxic effects of TNF‐α. Evidence is presented suggesting that TNF‐α triggered apoptosis is more susceptible to NF‐κB inhibition than constitutive apoptosis, leading to the possibility of the specific targeting of apoptosis in eosinophil sub‐populations. Prior to morphological signs of apoptosis, TNF‐α‐induced IL‐8 synthesis is abrogated by inhibition of NF‐κB. We propose that NF‐κB activation plays a critical role in controlling eosinophil responsiveness and apoptosis, and speculate that selective inhibitors of eosinophil NF‐κB activation may ultimately provide alternative therapeutic agents for the treatment of eosinophilic diseases, including asthma and allergic rhinitis.
Bioorganic & Medicinal Chemistry Letters | 2008
Kevin P. Madauss; Randy K. Bledsoe; Iain Mcfarlane Mclay; Eugene L. Stewart; Iain Uings; Gordon G. Weingarten; Shawn P. Williams
The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).
European Respiratory Journal | 2002
R.J.H. Austin; B. Maschera; A. Walker; L. Fairbairn; E. Meldrum; Stuart N. Farrow; Iain Uings
Fluticasone propionate (FP) and mometasone furoate (MF) are potent synthetic corticosteroids that are widely used as anti-inflammatory agents to treat respiratory diseases. As part of the assessment of the potential for side-effects associated with their use, their activities, not only at the glucocorticoid receptor (GR) but also at the other members of the steroid nuclear receptor family, have been compared. Cell-based functional systems were established to measure different aspects of GR function, as well as the activity at all the other steroid nuclear receptors. The effects of MF and FP on the GR were potent and indistinguishable. Neither corticosteroid showed any activity at the oestrogen receptor, while both were weak antagonists of the androgen receptor. FP was a relatively weak agonist of the progesterone receptor but MF was a very potent agonist of the progesterone receptor, giving activity at similar concentrations to those that stimulate the GR (concentration generating 50% maximal effect (EC50)=50 pM). Moreover, while FP was a weak antagonist of the mineralocorticoid receptor (concentration generating 50% maximal inhibitory effect=80 nM), MF displayed potent partial agonist activity (EC50=3 nM, 30%). Mometasone furoate is considerably less specific for the glucocorticoid receptor than fluticasone propionate, showing significant activity at other nuclear steroid receptors.
Nature Medicine | 2016
Damian J. Mole; Scott P. Webster; Iain Uings; Xiaozhong Zheng; Margaret Binnie; Kris Wilson; Jonathan P. Hutchinson; Olivier Mirguet; Ann Louise Walker; Benjamin Beaufils; Nicolas Ancellin; Lionel Trottet; Véronique Bénéton; Christopher G. Mowat; Martin Wilkinson; Paul Rowland; Carl Haslam; Andrew McBride; Natalie Homer; James Baily; Matthew Sharp; O. James Garden; Jeremy Hughes; Sarah E. M. Howie; Duncan S. Holmes; John Liddle; John P. Iredale
Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.
Biochemical Journal | 2001
Emma-Louise Cooke; Iain Uings; Chulin L. Xia; Patricia Woo; Keith Ray
The interleukin-1 (IL-1)-receptor-associated kinase (IRAK-1) is essential for IL-1-stimulated nuclear factor kappa B (NF-kappa B) activation. To study the role of IRAK-1 in IL-1 beta signalling, we have generated a set of IRAK-1 variants that express distinct domains of IRAK-1 either alone or in combination and have examined their effects on an NF-kappa B-responsive reporter in HeLa cells. Unlike full-length IRAK-1, the deletion mutants were unable to activate NF-kappa B in the absence of cytokine stimulation. However, an IRAK-1 variant lacking only the N-terminal domain retained the ability of the full-length protein to potentiate both IL-1 beta and tumour necrosis factor alpha (TNF alpha)-induced NF-kappa B activation. In contrast, expression of the N-terminus or the C-terminus of IRAK-1, or a fusion protein incorporating both domains, inhibited both IL-1 beta- and TNF alpha-induced effects. Expression of an IRAK-1 variant lacking only the C-terminal domain preferentially inhibited IL-1 beta versus TNF alpha-induced NF-kappa B activation. These data suggest that the C-terminal domain may link IRAK-1 to downstream signalling components common to both the IL-1 and TNF pathways. Furthermore, we have demonstrated that endogenous IRAK-1 becomes phosphorylated upon IL-1 beta treatment and can be detected along with NF-kappa B essential modulator (NEMO) and I kappa B kinase beta (IKK beta) in high-molecular-mass complexes of 600-800 kDa. Moreover, IRAK-1 could be detected in NEMO immunoprecipitates from IL-1 beta-stimulated cells. We conclude that IRAK-1 mediates IL-1 beta signal transduction through a ligand-dependent association of IRAK-1 with the IKK complex.
Journal of Medicinal Chemistry | 2010
Christopher M. Yates; Peter J. Brown; Eugene L. Stewart; Christopher Patten; Robert J. H. Austin; Jason A. Holt; Jodi M. Maglich; Davina C. Angell; Rosemary Sasse; Simon Taylor; Iain Uings; Ryan P. Trump
Glucocorticoid receptor (GR) agonists have been used for more than half a century as the most effective treatment of acute and chronic inflammatory conditions despite serious side effects that accompany their extended use that include glucose intolerance, muscle wasting, skin thinning, and osteoporosis. As a starting point for the identification of GR ligands with an improved therapeutic index, we wished to discover selective nonsteroidal GR agonists and antagonists with simplified structure compared to known GR ligands to serve as starting points for the optimization of dissociated GR modulators. To do so, we selected multiple chemical series by structure guided docking studies and evaluated GR agonist activity. From these efforts we identified 5-arylindazole compounds that showed moderate binding to the glucocorticoid receptor (GR) with clear opportunities for further development. Structure guided optimization was used to design arrays that led to potent GR agonists and antagonists. Several in vitro and in vivo experiments were utilized to demonstrate that GR agonist 23a (GSK9027) had a profile similar to that of a classical steroidal GR agonist.
Bioorganic & Medicinal Chemistry Letters | 2009
Heather Anne Barnett; Diane Mary Coe; Tony W.J. Cooper; T.I. Jack; Haydn Terence Jones; Simon J. F. Macdonald; Iain M. McLay; Natalie Rayner; Rosemary Sasse; Tracy Jane Shipley; Phil A. Skone; Graham I. Somers; Simon Taylor; Iain Uings; James Michael Woolven; Gordon G. Weingarten
Aryl aminopyrazole amides capped with N-alkylbenzamides 13-16 are selective glucocorticoid receptor agonists. 2,6-Disubstituted benzamides have prednisolone-like potency or better in vitro. Good oral exposure was demonstrated in the rat, with compounds with lower lipophilicity, for example N-hydroxyethyl benzamides (e.g., 16e).
British Journal of Pharmacology | 2013
Iain Uings; Deborah Needham; Joyce Lesley Matthews; Michael V. Haase; R Austin; Davina C. Angell; Karen Leavens; Jason A. Holt; Keith Biggadike; Stuart N. Farrow
Glucocorticoids are highly effective therapies for a range of inflammatory diseases. Advances in the understanding of the diverse molecular mechanisms underpinning glucocorticoid action suggest that anti‐inflammatory molecules with reduced side effect liabilities can be discovered. Here we set out to explore whether modification of the 17α position of the steroid nucleus could generate molecules with a unique pharmacological profile and to determine whether such molecules would retain anti‐inflammatory activity.