Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iain W. Chalmers is active.

Publication


Featured researches published by Iain W. Chalmers.


PLOS Neglected Tropical Diseases | 2009

Anti-schistosomal Intervention Targets Identified by Lifecycle Transcriptomic Analyses

Jennifer M. Fitzpatrick; Emily Peak; Samirah Perally; Iain W. Chalmers; John Barrett; Timothy P. Yoshino; Alasdair C. Ivens; Karl F. Hoffmann

Background Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis. Methodology/Principal Findings Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes), which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products) displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no known sequence similarity outside the Platyhelminthes), which were undetectable by the statistical comparisons. Conclusions/Significance Collectively, statistical and network-based exploratory analyses of transcriptomic datasets have led to a thorough characterisation of schistosome development. Information obtained from these experiments highlighted key transcriptional programs associated with lifecycle progression and identified numerous anti-schistosomal candidate molecules including G-protein coupled receptors, tetraspanins, Dyp-type peroxidases, fucosyltransferases, leishmanolysins and the netrin/netrin receptor complex.


PLOS Neglected Tropical Diseases | 2010

Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect Schistosoma viability.

Emily Peak; Iain W. Chalmers; Karl F. Hoffmann

Background Schistosomiasis, caused by infection with the blood fluke Schistosoma, is responsible for greater than 200,000 human deaths per annum. Objective high-throughput screens for detecting novel anti-schistosomal targets will drive ‘genome to drug’ lead translational science at an unprecedented rate. Current methods for detecting schistosome viability rely on qualitative microscopic criteria, which require an understanding of parasite morphology, and most importantly, must be subjectively interpreted. These limitations, in the current state of the art, have significantly impeded progress into whole schistosome screening for next generation chemotherapies. Methodology/Principal Findings We present here a microtiter plate-based method for reproducibly detecting schistosomula viability that takes advantage of the differential uptake of fluorophores (propidium iodide and fluorescein diacetate) by living organisms. We validate this high-throughput system in detecting schistosomula viability using auranofin (a known inhibitor of thioredoxin glutathione reductase), praziquantel and a range of small compounds with previously-described (gambogic acid, sodium salinomycin, ethinyl estradiol, fluoxetidine hydrochloride, miconazole nitrate, chlorpromazine hydrochloride, amphotericin b, niclosamide) or suggested (bepridil, ciclopirox, rescinnamine, flucytosine, vinblastine and carbidopa) anti-schistosomal activities. This developed method is sensitive (200 schistosomula/well can be assayed), relevant to industrial (384-well microtiter plate compatibility) and academic (96-well microtiter plate compatibility) settings, translatable to functional genomics screens and drug assays, does not require a priori knowledge of schistosome biology and is quantitative. Conclusions/Significance The wide-scale application of this fluorescence-based bioassay will greatly accelerate the objective identification of novel therapeutic lead targets/compounds to combat schistosomiasis. Adapting this bioassay for use with other parasitic worm species further offers an opportunity for great strides to be made against additional neglected tropical diseases of biomedical and veterinary importance.


Nature Communications | 2011

Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni

Kathrin K. Geyer; Carlos M. Rodríguez López; Iain W. Chalmers; Sabrina E. Munshi; Martha Truscott; James K. Heald; Mike J. Wilkinson; Karl F. Hoffmann

Similar to other metazoan pathogens, Schistosoma mansoni undergoes transcriptional and developmental regulation during its complex lifecycle and host interactions. DNA methylation as a mechanism to control these processes has, to date, been discounted in this parasite. Here we show the first evidence for cytosine methylation in the S. mansoni genome. Transcriptional coregulation of novel DNA methyltransferase (SmDnmt2) and methyl-CpG-binding domain proteins mirrors the detection of cytosine methylation abundance and implicates the presence of a functional DNA methylation machinery. Genome losses in cytosine methylation upon SmDnmt2 silencing and the identification of a hypermethylated, repetitive intron within a predicted forkhead gene confirm this assertion. Importantly, disruption of egg production and egg maturation by 5-azacytidine establishes an essential role for 5-methylcytosine in this parasite. These findings provide the first functional confirmation for this epigenetic modification in any worm species and link the cytosine methylation machinery to platyhelminth oviposition processes.


PLOS Neglected Tropical Diseases | 2012

The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: influence of developmental expression on human IgE responses

Colin M. Fitzsimmons; Frances M. Jones; Alex Stearn; Iain W. Chalmers; Karl F. Hoffmann; Jakub Wawrzyniak; Shona Wilson; Narcis B. Kabatereine; David W. Dunne

Background A human IgE response to Sm22.6 (a dominant IgE target in Schistosoma mansoni) is associated with the development of partial immunity. Located inside the tegument, the molecule belongs to a family of proteins from parasitic platyhelminths, the Tegument-Allergen-Like proteins (TALs). In addition to containing dynein-light-chain domains, these TALs also contain EF-hand domains similar to those found in numerous EF-hand allergens. Methodology/Principal Findings S. mansoni genome searches revealed 13 members (SmTAL1-13) within the species. Recent microarray data demonstrated they have a wide range of life-cycle transcriptional profiles. We expressed SmTAL1 (Sm22.6), SmTAL2, 3, 4, 5 and 13 as recombinant proteins and measured IgE and IgG4 in 200 infected males (7–60 years) from a schistosomiasis endemic region in Uganda. For SmTAL1 and 3 (transcribed in schistosomula through adult-worms and adult-worms, respectively) and SmTAL5 (transcribed in cercariae through adult-worms), detectable IgE responses were rare in 7–9 year olds, but increased with age. At all ages, IgE to SmTAL2 (expressed constitutively), was rare while anti-SmTAL2 IgG4 was common. Levels of IgE and IgG4 to SmTAL4 and 13 (transcribed predominantly in the cercariae/skin stage) were all low. Conclusions We have not measured SmTAL protein abundance or exposure in live parasites, but the antibody data suggests to us that, in endemic areas, there is priming and boosting of IgE to adult-worm SmTALs by occasional death of long-lived worms, desensitization to egg SmTALs through continuous exposure to dying eggs and low immunogenicity of larval SmTALs due to immunosuppression in the skin by the parasite. Of these, it is the gradual increase in IgE to the worm antigens that parallels age-dependent immunity seen in endemic areas.


Parasitology | 2012

Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum

Iain W. Chalmers; Karl F. Hoffmann

SUMMARY During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members.


International Journal for Parasitology | 2014

Excreted/secreted Schistosoma mansoni venom allergen-like 9 (SmVAL9) modulates host extracellular matrix remodelling gene expression

Timothy P. Yoshino; Martha Brown; Xiao-Jun Wu; Colin J. Jackson; Ramon Ocadiz-Ruiz; Iain W. Chalmers; Marlen Kolb; Cornelis H. Hokke; Karl F. Hoffmann

Graphical abstract


BMC Genomics | 2013

Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes

Kathrin K. Geyer; Iain W. Chalmers; Neil Mackintosh; Julie Elizabeth Hirst; Rory Geoghegan; Mathieu Badets; Peter M. Brophy; Klaus Brehm; Karl F. Hoffmann

BackgroundThe phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives.ResultsFirstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and ‘Turbellaria’) contain methylated cytosines within their genome compartments.ConclusionsCollectively, these findings provide the first direct evidence for a functionally conserved and enzymatically active DNA methylation system throughout the Platyhelminthes. Defining how this epigenetic feature shapes phenotypic diversity and development within the phylum represents an exciting new area of metazoan biology.


Frontiers in Immunology | 2015

Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection

Edward J. Farnell; Nidhi Tyagi; Stephanie Ryan; Iain W. Chalmers; Angela Pinot de Moira; Frances M. Jones; Jakub Wawrzyniak; Colin M. Fitzsimmons; Edridah M. Tukahebwa; Nicholas Furnham; Rick M. Maizels; David W. Dunne

The IgE response has been associated with both allergic reactions and immunity to metazoan parasites. Recently, we hypothesized that all environmental allergens bear structural homology to IgE-binding antigens from metazoan parasites and that this homology defines the relatively small number of protein families containing allergenic targets. In this study, known allergen structures (Pfam domains) from major environmental allergen families were used to predict allergen-like (SmProfilin, SmVAL-6, SmLipocalin, SmHSP20, Sm triosephosphate isomerase, SmThioredoxin, Sm superoxide dismutase, SmCyclophilin, and Sm phosphoglycerate kinase) and non-allergen-like [Sm dynein light chain (SmDLC), SmAldolase SmAK, SmUbiquitin, and Sm14-3-3] proteins in Schistosoma mansoni. Recombinant antigens were produced in Escherichia coli and IgG1, IgG4, and IgE responses against them measured in a cohort of people (n = 222) infected with S. mansoni. All allergen-like antigens were targeted by IgE responses in infected subjects, whilst IgE responses to the non-allergen-like antigens, SmAK, SmUbiquitin, and Sm14-3-3 were essentially absent being of both low prevalence and magnitude. Two new IgE-binding Pfam domain families, not previously described in allergen family databases, were also found, with prevalent IgE responses against SmDLC (PF01221) and SmAldolase (PF00274). Finally, it was demonstrated that immunoregulatory serological processes typically associated with allergens also occurred in responses to allergen-like proteins in S. mansoni infections, including the production of IgG4 in people responding with IgE and the down-regulation of IgE in response to increased antigen exposure from S. mansoni eggs. This study establishes that structures of known allergens can be used to predict IgE responses against homologous parasite allergen-like molecules (parallergens) and that serological responses with IgE/IgG4 to parallergens mirror those seen against allergens, supporting our hypothesis that allergenicity is rooted in expression of certain protein domain families in metazoan parasites.


PLOS Neglected Tropical Diseases | 2015

Drug-Induced Exposure of Schistosoma mansoni Antigens SmCD59a and SmKK7

Natalie Reimers; Arne Homann; Beate Höschler; Kristina Langhans; R. Alan Wilson; Christine Pierrot; Jamal Khalife; Christoph G. Grevelding; Iain W. Chalmers; Maria Yazdanbakhsh; Karl F. Hoffmann; Cornelis H. Hokke; Helmut Haas; Gabriele Schramm

Background Schistosomiasis is a serious health problem especially in developing countries and affects more than 243 million people. Only few anthelmintic drugs are available up to now. A major obstacle for drug treatment is the different developmental stages and the varying host compartments during worm development. Anthelmintic drugs have been tested mainly on adult schistosomes or freshly transformed cercariae. Knowledge concerning the larval stages is lacking. Methodology/Principal Findings In this study, we used in vitro-grown schistosomula (aged between 2 to 14 days) to investigate drug effects of the three anthelmintics praziquantel, artemether, and oxamniquine. Further, we analyzed the antibody accessibility of two exemplary schistosome antigens SmCD59a and SmKK7, before and after drug treatment. Our results demonstrated that praziquantel applied at a concentration of 1 μM inhibited development of all life stages. Application of 10 μM praziquantel led to dramatic morphological changes of all schistosomula. Artemether at 1 and 10 μM had differential effects depending on whether it was applied to 2-day as compared to 7- and 14-day schistosomula. While 2-day schistosomula were not killed but inhibited from further development, severe morphological damage was seen in 7- and 14-day schistosomula. Oxamniquine (1 and 10 μM) led to severe morphological impairment in all life stages. Analyzing the accessibility of the antigens SmCD59a and SmKK7 before drug treatment showed no antibody binding on living intact schistosomula. However, when schistosomula were treated with anthelmintics, both antigens became exposed on the larvae. Oxamniquine turned out to be most effective in promoting antibody binding to all schistosomula stages. Conclusion This study has revealed marked differences in anthelmintic drug effects against larvae. Drug treatment increases surface antigen presentation and renders larvae accessible to antibody attack.


PLOS Neglected Tropical Diseases | 2017

The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni

Kathrin K. Geyer; Umar H. Niazi; David Duval; Céline Cosseau; Chad Tomlinson; Iain W. Chalmers; Martin T. Swain; David J. Cutress; Utibe Bickham-Wright; Sabrina E. Munshi; Christoph Grunau; Timothy P. Yoshino; Karl F. Hoffmann

Background The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail’s response to infection. Methodology/Principle findings Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail’s DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species’ genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). Conclusions/Significance The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategies.

Collaboration


Dive into the Iain W. Chalmers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelis H. Hokke

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shona Wilson

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Yoshino

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge