Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian A. Franchi is active.

Publication


Featured researches published by Ian A. Franchi.


Science | 2006

Organics captured from comet 81P/Wild 2 by the Stardust spacecraft

Scott A. Sandford; Jérôme Aléon; Conel M. Od. Alexander; Tohru Araki; Sas̆a Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; John Robert Brucato; Mark J. Burchell; Henner Busemann; Anna L. Butterworth; Simon J. Clemett; George D. Cody; L. Colangeli; George Cooper; Louis D'Hendecourt; Zahia Djouadi; Jason P. Dworkin; Gianluca Ferrini; Holger Fleckenstein; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Mary K. Gilles; Daniel P. Glavin; Matthieu Gounelle; Faustine Grossemy; Chris Jacobsen

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Science | 2006

Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust

Friedrich Hörz; Janet Borg; John P. Bradley; John C. Bridges; D. E. Brownlee; Mark J. Burchell; Miaofang Chi; Mark J. Cintala; Zurong Dai; Zahia Djouadi; G. Dominguez; Thanasis E. Economou; Sam A. J. Fairey; Christine Floss; Ian A. Franchi; Giles A. Graham; Simon F. Green; Philipp R. Heck; Peter Hoppe; Joachim Huth; Hope A. Ishii; Anton T. Kearsley; J. Kissel; J. Leitner; Hugues Leroux; K. K. Marhas; Keiko Messenger; Craig S. Schwandt; Thomas A. See; Christopher J. Snead

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.


Nature | 2005

Widespread magma oceans on asteroidal bodies in the early Solar System

R. C. Greenwood; Ian A. Franchi; Albert Jambon; P. C. Buchanan

Immediately following the formation of the Solar System, small planetary bodies accreted, some of which melted to produce igneous rocks. Over a longer timescale (15–33 Myr), the inner planets grew by incorporation of these smaller objects through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets, including Earth. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (≥ 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earths high Mg/Si ratio.


Science | 2006

Elemental compositions of comet 81P/Wild 2 samples collected by Stardust

G. J. Flynn; Pierre Bleuet; Janet Borg; John P. Bradley; Frank E. Brenker; S. Brennan; John C. Bridges; D. E. Brownlee; Emma S. Bullock; Manfred Burghammer; Benton C. Clark; Zu Rong Dai; Charles P. Daghlian; Zahia Djouadi; Sirine C. Fakra; Tristan Ferroir; Christine Floss; Ian A. Franchi; Zack Gainsforth; J.-P. Gallien; Philippe Gillet; Patrick G. Grant; Giles A. Graham; Simon F. Green; Faustine Grossemy; Philipp R. Heck; Gregory F. Herzog; Peter Hoppe; Friedrich Hörz; Joachim Huth

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed (∼180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.


Science | 2006

Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust

Lindsay P. Keller; Sasa Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; Henner Busemann; John Robert Brucato; Mark J. Burchell; L. Colangeli; Louis D'Hendecourt; Zahia Djouadi; Gianluca Ferrini; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Monica M. Grady; Giles A. Graham; Faustine Grossemy; Anton T. Kearsley; Graciela Matrajt; Keiko Nakamura-Messenger; V. Mennella; Larry R. Nittler; M. E. Palumbo; Frank J. Stadermann; Peter Tsou; Alessandra Rotundi; Scott A. Sandford; Christopher J. Snead

Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.


Rapid Communications in Mass Spectrometry | 1999

High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications

Martin F. Miller; Ian A. Franchi; A. S. Sexton; C. T. Pillinger

The use of infrared laser-assisted fluorination to release oxygen from milligram quantities of silicates or other oxide mineral grains is a well-established technique. However, relatively few studies have reported the optimisation of this procedure for oxygen-17 isotope measurements. We describe here details of an analytical system using infrared (10 µm) laser-assisted fluorination, in conjunction with a dual inlet mass spectrometer of high resolving power (∼250) to provide 17O and 18O oxygen isotope measurements from 0.5–2 mg of silicates or other oxide mineral grains. Respective precisions (1) of typically 0.08 and 0.04‰ are obtained for the complete analytical procedure. Departures from the mass-dependent oxygen isotope fractionation line are quantified by Δ17O; our precision (1) of such measurements on individual samples is shown to be ±0.024‰. In turn, this permits the offset between parallel, mass-dependent fractionation lines to be characterised to substantially greater precision than has been possible hitherto. Application of this system to investigate the 17O versus 18O relationship for numerous terrestrial whole-rock and mineral samples, of diverse geological origins and age, indicates that the complete data set may be described by a single, mass-dependent fractionation line of slope 0.5244± 0.00038 (standard error). Copyright


Geochimica et Cosmochimica Acta | 2009

Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites

Edward R. D. Scott; R. C. Greenwood; Ian A. Franchi; I. S. Sanders

A few eucrites have anomalous oxygen isotopic compositions. To help understand their origin and identify additional samples, we have analyzed the oxygen isotopic compositions of 18 eucrites and four diogenites. Except for five eucrites, these meteorites have DO values that lie within 2r of their mean value viz., 0.242 ± 0.016&, consistent with igneous isotopic homogenization of Vesta. The five exceptional eucrites—NWA 1240, Pasamonte (both clast and matrix samples), PCA 91007, A-881394, and Ibitira—have DO values that lie, respectively, 4r, 5r, 5r, 15r, and 21r away from this mean value. NWA 1240 has a dO value that is 5r below the mean eucrite value. Four of the five outliers are unbrecciated and unshocked basaltic eucrites, like NWA 011, the first eucrite found to have an anomalous oxygen isotopic composition. The fifth outlier, Pasamonte, is composed almost entirely of unequilibrated basaltic clasts. Published chemical data for the six eucrites with anomalous oxygen isotopic compositions (including NWA 011) exclude contamination by chondritic projectiles as a source of the oxygen anomalies. Only NWA 011 has an anomalous Fe/Mn ratio, but several anomalous eucrites have exceptional Na, Ti, or Cr concentrations. We infer that the six anomalous eucrites are probably derived from five distinct Vesta-like parent bodies (Pasamonte and PCA 91007 could come from one body). These anomalous eucrites, like the isotopically normal, unbrecciated eucrites with 4.48 Gyr Ar-Ar ages, are probably deficient in brecciation and shock effects because they were sequestered in small asteroids ( 10 km diameter) during the Late Heavy Bombardment following ejection from Vesta-like bodies. The preservation of Vesta’s crust and the lack of deeply buried samples from the hypothesized Vesta-like bodies are consistent with the removal of these bodies from the asteroid belt by gravitational perturbations from planets and protoplanets, rather than by collisional grinding. 2009 Elsevier Ltd. All rights reserved.


Science | 2012

Tissint Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of Mars

H. Chennaoui Aoudjehane; G. Avice; Jean-Alix Barrat; Omar Boudouma; G. Chen; M.J.M. Duke; Ian A. Franchi; Jérôme Gattacceca; Monica M. Grady; R. C. Greenwood; C. D. K. Herd; R. Hewins; Albert Jambon; Bernard Marty; Pierre Rochette; C. L. Smith; Violaine Sautter; A. B. Verchovsky; P. Weber; Brigitte Zanda

A New Rock from Mars On 18 July 2011 a meteorite originating from Mars fell on the moroccan desert. Chennaoui Aoudjehane et al. (p. 785, published online 11 October) show that this meteorite was ejected from the surface of Mars 700,000 years ago and contains components derived from the interior, surface, and atmosphere of the red planet. Previous to this fall, only four other martian meteorites have been collected after being witnessed falling to Earth. All the other martian meteorites that are represented in collections around the world, have been found long after their arrival on Earth, and thus have suffered from exposure to the terrestrial environment. A meteorite that fell in Morocco in July 2011 provides a sample to study processes that operated on Mars 700,000 years ago. Tissint (Morocco) is the fifth martian meteorite collected after it was witnessed falling to Earth. Our integrated mineralogical, petrological, and geochemical study shows that it is a depleted picritic shergottite similar to EETA79001A. Highly magnesian olivine and abundant glass containing martian atmosphere are present in Tissint. Refractory trace element, sulfur, and fluorine data for the matrix and glass veins in the meteorite indicate the presence of a martian surface component. Thus, the influence of in situ martian weathering can be unambiguously distinguished from terrestrial contamination in this meteorite. Martian weathering features in Tissint are compatible with the results of spacecraft observations of Mars. Tissint has a cosmic-ray exposure age of 0.7 ± 0.3 million years, consistent with those of many other shergottites, notably EETA79001, suggesting that they were ejected from Mars during the same event.


Geology | 2002

Carbon and nitrogen isotope disturbances and an end-Norian (Late Triassic) extinction event

Mark A. Sephton; Ken Amor; Ian A. Franchi; Paul B. Wignall; Robert J. Newton; John-Paul Zonneveld

Major perturbations of organic carbon and nitrogen isotope ratios from a Norian-Rhaetian (Late Triassic) boundary section in British Columbia coincide with an extinction of the dominant, deep-water invertebrate fauna of the Late Triassic (monotids and most ammonoids). The carbon isotope excursion is attributed to the development of widespread oceanic stagnation that favored organic-rich shale deposition. The coincident nitrogen isotope excursion suggests that progressively more nitrate-limited productivity forced a change to nitrogen-fixing cyanobacteria populations as ocean stagnation created nutrient-starved conditions. The biotic crisis and geochemical events of the Norian-Rhaetian boundary predate the latest Rhaetian (end-Triassic) mass extinction. Thus, the Late Triassic interval was marked by more than one extinction event.


Science | 2009

An anomalous basaltic meteorite from the innermost main belt

Philip A. Bland; Pavel Spurný; Martin C. Towner; A. W. R. Bevan; Andrew T. Singleton; William F. Bottke; R. C. Greenwood; Steven R. Chesley; Lukáš Shrbený; Jiri Borovicka; Zdenek Ceplecha; T. P. McClafferty; David G. Vaughan; G. K. Benedix; G. Deacon; K. T. Howard; Ian A. Franchi; Robert M. Hough

The Meteorite Who Fell to Earth Orbital data is available for only a handful of meteorites. Some are found long after they fell to Earth. Others are recovered after they have been observed falling through the atmosphere, but their trajectories are rarely recorded. Bland et al. (p. 1525) used a photographic camera network located in the Australian desert to track a fireball in the sky, find the meteorite, and establish its orbit. The meteorite is a basaltic achondrite; most such rocks have been traced to the major asteroid Vesta. In this case, the meteorites isotopic composition and orbital properties suggest a distinct parent asteroid—a different source of basaltic material residing in the innermost main belt. This meteorite’s composition and orbital properties are such that it cannot be traced to the parent asteroid. Triangulated observations of fireballs allow us to determine orbits and fall positions for meteorites. The great majority of basaltic meteorites are derived from the asteroid 4 Vesta. We report on a recent fall that has orbital properties and an oxygen isotope composition that suggest a distinct parent body. Although its orbit was almost entirely contained within Earth’s orbit, modeling indicates that it originated from the innermost main belt. Because the meteorite parent body would likely be classified as a V-type asteroid, V-type precursors for basaltic meteorites unrelated to Vesta may reside in the inner main belt. This starting location is in agreement with predictions of a planetesimal evolution model that postulates the formation of differentiated asteroids in the terrestrial planet region, with surviving fragments concentrated in the innermost main belt.

Collaboration


Dive into the Ian A. Franchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge