Ian A. Swinburne
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian A. Swinburne.
Genes & Development | 2008
Ian A. Swinburne; David G. Míguez; Dirk Landgraf; Pamela A. Silver
Introns may affect gene expression by increasing the time required to transcribe the gene. One way for extended transcription times to affect the behavior of a gene expression program is through a negative feedback loop. Here, we show that a logically engineered negative feedback loop in animal cells produces expression pulses, which have a broad time distribution that increases with intron length. These results in combination with mathematical models provide insight into what may produce the intron-dependent pulse distributions. We conclude that the long production time required for large intron-containing genes is significant for the behavior of gene expression programs.
Cell | 2013
Fengzhu Xiong; Andrea R. Tentner; Peng Huang; Arnaud Gelas; Kishore Mosaliganti; Lydie Souhait; Nicolas Rannou; Ian A. Swinburne; Nikolaus D. Obholzer; Paul D. Cowgill; Alexander F. Schier; Sean G. Megason
Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.
Developmental Cell | 2008
Ian A. Swinburne; Pamela A. Silver
The time taken to transcribe most metazoan genes is significant because of the substantial length of introns. Developmentally regulated gene networks, where timing and dynamic patterns of expression are critical, may be particularly sensitive to intron delays. We revisit and comment on a perspective last presented by Thummel 16 years ago: transcriptional delays may contribute to timing mechanisms during development. We discuss the presence of intron delays in genetic networks. We consider how delays can impact particular moments during development, which mechanistic attributes of transcription can influence them, how they can be modeled, and how they can be studied using recent technological advances as well as classical genetics.
PLOS Computational Biology | 2012
Kishore Mosaliganti; Ramil R. Noche; Fengzhu Xiong; Ian A. Swinburne; Sean G. Megason
The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available publicly under an open source BSD license (https://github.com/krm15/ACME).
Development | 2012
Nikolaus D. Obholzer; Ian A. Swinburne; Evan Schwab; Alex Nechiporuk; Teresa Nicolson; Sean G. Megason
Forward genetic screens in zebrafish have identified >9000 mutants, many of which are potential disease models. Most mutants remain molecularly uncharacterized because of the high cost, time and labor investment required for positional cloning. These costs limit the benefit of previous genetic screens and discourage future screens. Drastic improvements in DNA sequencing technology could dramatically improve the efficiency of positional cloning in zebrafish and other model organisms, but the best strategy for cloning by sequencing has yet to be established. Using four zebrafish inner ear mutants, we developed and compared two approaches for ‘cloning by sequencing’: one based on bulk segregant linkage (BSFseq) and one based on homozygosity mapping (HMFseq). Using BSFseq we discovered that mutations in lmx1b and jagged1b cause abnormal ear morphogenesis. With HMFseq we validated that the disruption of cdh23 abolishes the ears sensory functions and identified a candidate lesion in lhfpl5a predicted to cause nonsyndromic deafness. The success of HMFseq shows that the high intrastrain polymorphism rate in zebrafish eliminates the need for time-consuming map crosses. Additionally, we analyzed diversity in zebrafish laboratory strains to find areas of elevated diversity and areas of fixed homozygosity, reinforcing recent findings that genome diversity is clustered. We present a database of >15 million sequence variants that provides much of this approachs power. In our four test cases, only a single candidate single nucleotide polymorphism (SNP) remained after subtracting all database SNPs from a mutants critical region. The saturation of the common SNP database and our open source analysis pipeline MegaMapper will improve the pace at which the zebrafish community makes unique discoveries relevant to human health.
Cell | 2014
Fengzhu Xiong; Wenzhe Ma; Tom W. Hiscock; Kishore Mosaliganti; Andrea R. Tentner; Kenneth A. Brakke; Nicolas Rannou; Arnaud Gelas; Lydie Souhait; Ian A. Swinburne; Nikolaus D. Obholzer; Sean G. Megason
Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.
Developmental Biology | 2012
Yi-Fan Lin; Ian A. Swinburne; Deborah Yelon
Cardiomyocyte hypertrophy is a complex cellular behavior involving coordination of cell size expansion and myofibril content increase. Here, we investigate the contribution of cardiomyocyte hypertrophy to cardiac chamber emergence, the process during which the primitive heart tube transforms into morphologically distinct chambers and increases its contractile strength. Focusing on the emergence of the zebrafish ventricle, we observed trends toward increased cell surface area and myofibril content. To examine the extent to which these trends reflect coordinated hypertrophy of individual ventricular cardiomyocytes, we developed a method for tracking cell surface area changes and myofibril dynamics in live embryos. Our data reveal a previously unappreciated heterogeneity of ventricular cardiomyocyte behavior during chamber emergence: although cardiomyocyte hypertrophy was prevalent, many cells did not increase their surface area or myofibril content during the observed timeframe. Despite the heterogeneity of cell behavior, we often found hypertrophic cells neighboring each other. Next, we examined the impact of blood flow on the regulation of cardiomyocyte behavior during this phase of development. When blood flow through the ventricle was reduced, cell surface area expansion and myofibril content increase were both dampened, and the behavior of neighboring cells did not seem coordinated. Together, our studies suggest a model in which hemodynamic forces have multiple influences on cardiac chamber emergence: promoting both cardiomyocyte enlargement and myofibril maturation, enhancing the extent of cardiomyocyte hypertrophy, and facilitating the coordination of neighboring cell behaviors.
Journal of Biological Chemistry | 2008
Pablo Cironi; Ian A. Swinburne; Pamela A. Silver
Evolution modulates the quantitative characteristics of protein interactions and often uses combinations of weak interactions to achieve a particular specificity. We addressed how quantitative optimization might be used in the design of multidomain proteins, using a chimera containing epidermal growth factor (EGF) as a cell targeting element and interferon-α-2a (IFNα-2a) to initiate signal transduction. We first connected EGF and IFNα-2a via a linker that allows both ligands to bind to their receptors on a cell surface and then incorporated a series of mutations into the IFNα-2a portion that progressively decrease both the on rate and the dissociation constant of the IFNα-2a-IFNα receptor 2 (IFNAR2) interaction. Using this strategy, we designed chimeric proteins in which the activation of the IFNα receptor in HeLa, A431, and engineered Daudi cells depends on the presence of EGF receptor on the same cell. The mutant chimeric proteins also inhibited proliferation of IFNα-sensitive cells in an EGF receptor-dependent manner. These results provide insights into the quantitative requirements for specific binding to multisubunit receptors and illustrate the value of a quantitative approach in the design of synthetic-biological constructs.
Science | 2018
Tsung-Li Liu; Srigokul Upadhyayula; Daniel E. Milkie; Ved Singh; Kai Wang; Ian A. Swinburne; Kishore Mosaliganti; Zach M. Collins; Tom W. Hiscock; Jamien Shea; Abraham Q. Kohrman; Taylor N. Medwig; Daphné Dambournet; Ryan Forster; Brian Cunniff; Yuan Ruan; Hanako Yashiro; Steffen Scholpp; Elliot M. Meyerowitz; Dirk Hockemeyer; David G. Drubin; Benjamin L. Martin; David Q. Matus; Minoru Koyama; Sean G. Megason; Tom Kirchhausen; Eric Betzig
Continuing the resolution revolution The living cell contains dynamic, spatially complex subassemblies that are sensitive to external perturbations. To minimize such perturbations, cells should be imaged in their native multicellular environments, under as gentle illumination as possible. However, achieving the spatiotemporal resolution needed to follow three-dimensional subcellular processes in detail under these conditions is challenging: Sample-induced aberrations degrade resolution and sensitivity, and high resolution usually requires intense excitation. Liu et al. combined noninvasive lattice light-sheet microscopy with aberration-correcting adaptive optics to study a variety of delicate subcellular events in vivo, including organelle remodeling during mitosis and growth cone dynamics during spinal cord development. Science, this issue p. eaaq1392 Adaptive optical lattice light-sheet microscopy permits delicate 3D subcellular processes to be viewed natively in vivo. INTRODUCTION Organisms live by means of the complex, dynamic, three-dimensional (3D) interplay between millions of components, from the molecular to the multicellular. Visualizing this complexity in its native form requires imaging at high resolution in space and time anywhere within the organism itself, because only there are all the environmental factors that regulate its physiology present. However, the optical heterogeneity of multicellular systems leads to aberrations that quickly compromise resolution, signal, and contrast with increasing imaging depth. Furthermore, even in the absence of aberrations, high resolution and fast imaging are usually accompanied by intense illumination, which can perturb delicate subcellular processes or even introduce permanent phototoxic effects. RATIONALE We combined two imaging technologies to address these problems. The first, lattice light-sheet microscopy (LLSM), rapidly and repeatedly sweeps an ultrathin sheet of light through a volume of interest while acquiring a series of images, building a high-resolution 3D movie of the dynamics within. The confinement of the illumination to a thin plane insures that regions outside the volume remain unexposed, while the parallel collection of fluorescence from across the plane permits low, less perturbative intensities to be used. The second technology, adaptive optics (AO), measures sample-induced distortions to the image of a fluorescent “guide star” created within the volume—distortions that also affect the acquired light-sheet images—and compensates for these by changing the shape of a mirror to create an equal but opposite distortion. RESULTS We applied AO-LLSM to study a variety of 3D subcellular processes in vivo over a broad range of length scales, from the nanoscale diffusion of clathrin-coated pits (CCPs) to axon-guided motility across 200 μm of the developing zebrafish spinal cord. Clear delineation of cell membranes allowed us to computationally isolate and individually study any desired cell within the crowded multicellular environment of the intact organism. By doing so, we could compare specific processes across different cell types, such as rates of CCP internalization in muscle fibers and brain cells, organelle remodeling during cell division in the developing brain and eye, and motility mechanisms used by immune cells and metastatic breast cancer cells. Although most examples were taken from zebrafish embryos, we also demonstrated AO-LLSM in a human stem cell–derived organoid, a Caenorhabditis elegans nematode, and Arabidopsis thaliana leaves. CONCLUSION AO-LLSM takes high-resolution live-cell imaging of subcellular processes from the confines of the coverslip to the more physiologically relevant 3D environment within whole transparent organisms. This creates new opportunities to study the phenotypic diversity of intracellular dynamics, extracellular communication, and collective cell behavior across different cell types, organisms, and developmental stages. High-resolution in vivo cell biology. AO-LLSM permits the study of 3D subcellular processes in their native multicellular environments at high spatiotemporal resolution, including (clockwise from upper left) growth of spinal cord axons; cancer cell metastasis; collective cellular motion; endocytosis; microtubule displacements; immune cell migration; and (center) organelle dynamics. True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.
Developmental Biology | 2016
Sahar Nissim; Olivia Weeks; Jared C. Talbot; John Hedgepeth; Julia Wucherpfennig; Stephanie Schatzman-Bone; Ian A. Swinburne; Mauricio Cortes; Kristen Alexa; Sean G. Megason; Trista E. North; Sharon L. Amacher; Wolfram Goessling
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease.