Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian B. Hogue is active.

Publication


Featured researches published by Ian B. Hogue.


Journal of Theoretical Biology | 2008

A Methodology For Performing Global Uncertainty And Sensitivity Analysis In Systems Biology

Simeone Marino; Ian B. Hogue; Christian J. Ray; Denise E. Kirschner

Accuracy of results from mathematical and computer models of biological systems is often complicated by the presence of uncertainties in experimental data that are used to estimate parameter values. Current mathematical modeling approaches typically use either single-parameter or local sensitivity analyses. However, these methods do not accurately assess uncertainty and sensitivity in the system as, by default, they hold all other parameters fixed at baseline values. Using techniques described within we demonstrate how a multi-dimensional parameter space can be studied globally so all uncertainties can be identified. Further, uncertainty and sensitivity analysis techniques can help to identify and ultimately control uncertainties. In this work we develop methods for applying existing analytical tools to perform analyses on a variety of mathematical and computer models. We compare two specific types of global sensitivity analysis indexes that have proven to be among the most robust and efficient. Through familiar and new examples of mathematical and computer models, we provide a complete methodology for performing these analyses, in both deterministic and stochastic settings, and propose novel techniques to handle problems encountered during these types of analyses.


The Lancet | 2005

Depletion of latent HIV-1 infection in vivo: a proof-of-concept study

Ginger Lehrman; Ian B. Hogue; Sarah Palmer; Cheryl Jennings; Celsa A. Spina; Ann Wiegand; Alan Landay; Robert W. Coombs; Douglas D. Richman; John W. Mellors; John M. Coffin; Ronald J. Bosch; David M. Margolis

BACKGROUND Persistent infection in resting CD4+ T cells prevents eradication of HIV-1. Since the chromatin remodeling enzyme histone deacetylase 1 (HDAC1) maintains latency of integrated HIV, we tested the ability of the HDAC inhibitor valproic acid to deplete persistent, latent infection in resting CD4+ T cells. PROCEDURES We did a proof-of-concept study in four volunteers infected with HIV and on highly-active antiretroviral therapy (HAART). After intensifying the effect of HAART with subcutaneous enfuvirtide 90 mug twice daily for 4-6 weeks to prevent the spread of HIV, we added oral valproic acid 500-750 mg twice daily to their treatment regimen for 3 months. We quantified latent infection of resting CD4+ T cells before and after augmented treatment by limiting-dilution culture of resting CD4+ T cells after ex-vivo activation. FINDINGS The frequency of resting cell infection was stable before addition of enfuvirtide and valproic acid, but declined thereafter. This decline was significant in three of four patients (mean reduction 75%, range 68% to >84%). Patients had slight reactions to enfuvirtide at the injection site, but otherwise tolerated treatment well. INTERPRETATION Combination therapy with an HDAC inhibitor and intensified HAART safely accelerates clearance of HIV from resting CD4+ T cells in vivo, suggesting a new and practical approach to eliminate HIV infection in this persistent reservoir. This finding, though not definitive, suggests that new approaches will allow the cure of HIV in the future.


Journal of Virology | 2008

Interaction between the Human Immunodeficiency Virus Type 1 Gag Matrix Domain and Phosphatidylinositol-(4,5)-Bisphosphate Is Essential for Efficient Gag Membrane Binding

Vineela Chukkapalli; Ian B. Hogue; Vitaly Boyko; Wei Shau Hu; Akira Ono

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P2 depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P2 depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P2-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P2. To examine a putative Gag interaction with PI(4,5)P2, we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P2. Using this assay, we observed that PI(4,5)P2 significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P2 for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P2 binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P2-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P2 on the membrane and that the MA basic domain mediates this interaction.


Cell Host & Microbe | 2013

Virus Infections in the Nervous System

Orkide O. Koyuncu; Ian B. Hogue; Lynn W. Enquist

Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central (CNS) nervous systems. The CNS is protected from most virus infections by effective immune responses and multilayer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections.


Journal of Virology | 2011

Gag Induces the Coalescence of Clustered Lipid Rafts and Tetraspanin-Enriched Microdomains at HIV-1 Assembly Sites on the Plasma Membrane

Ian B. Hogue; Jonathan R. Grover; Ferri Soheilian; Kunio Nagashima; Akira Ono

ABSTRACT The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.


Nature Communications | 2013

Fast GCaMPs for improved tracking of neuronal activity

Xiaonan R. Sun; Aleksandra Badura; Diego A. Pacheco; Laura A. Lynch; Eve R. Schneider; Matthew P. Taylor; Ian B. Hogue; Lynn W. Enquist; Mala Murthy; Samuel S.-H. Wang

The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca(2+)-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domains Ca(2+)-chelating residues. Second, we find that off-responses to Ca(2+) are rate-limited by dissociation of the RS20 domain from calmodulins hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca(2+) and by slow binding to the C-lobe at lower Ca(2+). We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of K(D), allowing coexpression of multiple variants to span an expanded range of Ca(2+) concentrations. Finally, we show that Fast-GCaMPs track natural song in Drosophila auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.


PLOS Pathogens | 2010

Nucleocapsid Promotes Localization of HIV-1 Gag to Uropods That Participate in Virological Synapses between T Cells

G. Nicholas Llewellyn; Ian B. Hogue; Jonathan R. Grover; Akira Ono

T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent. However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells. Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally, we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs.


Journal of Virology | 2009

Quantitative Fluorescence Resonance Energy Transfer Microscopy Analysis of the Human Immunodeficiency Virus Type 1 Gag-Gag Interaction: Relative Contributions of the CA and NC Domains and Membrane Binding

Ian B. Hogue; Adam D. Hoppe; Akira Ono

ABSTRACT The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.


PLOS Pathogens | 2014

Cellular Mechanisms of Alpha Herpesvirus Egress: Live Cell Fluorescence Microscopy of Pseudorabies Virus Exocytosis

Ian B. Hogue; Jens B. Bosse; Jiun-Ruey Hu; Stephan Y. Thiberge; Lynn W. Enquist

Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF) microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress.


Journal of General Virology | 2008

The dual role of dendritic cells in the immune response to human immunodeficiency virus type 1 infection

Ian B. Hogue; Seema H. Bajaria; Beth A. Fallert; Shulin Qin; Todd A. Reinhart; Denise E. Kirschner

Many aspects of the complex interaction between human immunodeficiency virus type 1 (HIV-1) and the human immune system remain elusive. Our objective was to study these interactions, focusing on the specific roles of dendritic cells (DCs). DCs enhance HIV-1 infection processes as well as promote an antiviral immune response. We explored the implications of these dual roles. A mathematical model describing the dynamics of HIV-1, CD4+ and CD8+ T-cells, and DCs interacting in a human lymph node was analysed and is presented here. We have validated the behaviour of our model against non-human primate simian immunodeficiency virus experimental data and published human HIV-1 data. Our model qualitatively and quantitatively recapitulates clinical HIV-1 infection dynamics. We have performed sensitivity analyses on the model to determine which mechanisms strongly affect infection dynamics. Sensitivity analysis identifies system interactions that contribute to infection progression, including DC-related mechanisms. We have compared DC-dependent and -independent routes of CD4+ T-cell infection. The model predicted that simultaneous priming and infection of T cells by DCs drives early infection dynamics when activated T-helper cell numbers are low. Further, our model predicted that, while direct failure of DC function and an indirect failure due to loss of CD4+ T-helper cells are both significant contributors to infection dynamics, the former has a more significant impact on HIV-1 immunopathogenesis.

Collaboration


Dive into the Ian B. Hogue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Ono

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanben Meng

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge