Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian C. Murfet is active.

Publication


Featured researches published by Ian C. Murfet.


Planta | 1984

Internode length in Pisum: The Le gene controls the 3?-hydroxylation of gibberellin A20 to gibberellin A1

Timothy J. Ingram; James B. Reid; Ian C. Murfet; Paul Gaskin; Christine L. Willis; Jake MacMillan

The influence of the Na and Le genes in peas on gibberellin (GA) levels and metabolism were examined by gas chromatographic-mass spectrometric analysis of extracts from a range of stem-length genotypes fed with [13C, 3H]GA20. The substrate was metabolised to [13C, 3H]GA1, [13C, 3H]GA8 and [13C, 3H]GA29 in the immature, expanding apical tissue of all genotypes carrying Le. In contrast, [13C, 3H]GA29 and, in one line, [13C, 3H]GA29-catabolite, were the only products detected in plants homozygous for the le gene. These results confirm that the Le gene in peas controls the 3β-hydroxylation of GA20 to GA1. Qualitatively the same results were obtained irrespective of the genotype at the Na locus. In all Na lines the [13C, 3H]GA20 metabolites were considerably diluted by endogenous [12C]GAs, implying that the metabolism of [13C, 3H]GA20 mirrored that of endogenous [12C]GA20. In contrast, the [13C, 3H]GA20 metabolites in na lines showed no dilution with [12C]GAs, confirming that the na mutation prevents the production of C19-GAs. Estimates of the levels of endogenous GAs in the apical tissues of Na lines, made from the 12C:13C isotope ratios and the radioactivity recovered in respective metabolites, varied between 7 and 40 ng of each GA per plant in the tissue expanded during the 5 d between treatment with [13C, 3H]GA20 and extraction. No [12C]GA1 and only traces of [12C]GA8 (in one line) were detected in the two Na le lines examined. These results are discussed in relation to recent observations on dwarfism in rice and maize.


Plant Physiology | 1996

Branching in Pea (Action of Genes Rms3 and Rms4).

Christine A. Beveridge; John Ross; Ian C. Murfet

The nonallelic ramosus mutations rms3–2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3–2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3–2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953–959) because reciprocal grafts between rms3–2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3–2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3–2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot.


Plant Physiology | 1997

The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s)

Christine A. Beveridge; Gregory M. Symons; Ian C. Murfet; John Ross; Catherine Rameau

Rms1 is one of the series of five ramosus loci in pea (Pisum sativum L.) in which recessive mutant alleles confer increased branching at basal and aerial vegetative nodes. Shoots of the nonallelic rms1 and rms2 mutants are phenotypically similar in most respects. However, we found an up to 40-fold difference in root-sap zeatin riboside ([9R]Z) concentration between rms1 and rms2 plants. Compared with wild-type (WT) plants, the concentration of [9R]Z in rms1 root sap was very low and the concentration in rms2 root sap was slightly elevated. To our knowledge, the rms1 mutant is therefore the second ramosus mutant (rms4 being the first) to be characterized with low root-sap [9R]Z content. Like rms2, the apical bud and upper nodes of rms1 plants contain elevated indole-3-acetic acid levels compared with WT shoots. Therefore, the rms1 mutant demonstrates that high shoot auxin levels and low root-sap cytokinin levels are not necessarily correlated with increased apical dominance in pea. A graft-transmissible basis of action has been demonstrated for both mutants from reciprocal grafts between mutant and WT plants. Branching was also largely inhibited in rms1 shoots when grafted to rms2 rootstocks, but was not inhibited in rms2 shoots grafted to rms1 rootstocks. These grafting results are discussed, along with the conclusion that hormone-like signals other than auxin and cytokinin are also involved.


Plant Physiology | 1997

Pea Mutants with Reduced Sensitivity to Far-Red Light Define an Important Role for Phytochrome A in Day-Length Detection

James L. Weller; Ian C. Murfet; James B. Reid

In garden pea (Pisum sativum L.), a long-day plant, long photoperiods promote flowering by reducing the synthesis or transport of a graft-transmissible inhibitor of flowering. Previous physiological studies have indicated that this promotive effect is predominantly achieved through a response that requires long exposures to light and for which far-red (FR) light is the most effective. These characteristics implicate the action of phytochrome A (phyA). To investigate this matter further, we screened ethylmethane sulfonate-mutagenized pea seedlings for FR-unresponsive, potentially phyA-deficient mutants. Two allelic, recessive mutants were isolated and were designated fun1 for FR unresponsive. The fun1–1 mutant is specifically deficient in the PHYA apoprotein and has a seedling phenotype indistinguishable from wild type when grown under white light. However, fun1–1 plants grown to maturity under long photoperiods show a highly pleiotropic phenotype, with short internodes, thickened stems, delayed flowering and senescence, longer peduncles, and higher seed yield. This phenotype results in large part from an inability of fun1–1 to detect day extensions. These results establish a crucial role for phyA in the control of flowering in pea, and show that phyA mediates responses to both red and FR light. Furthermore, grafting and epistasis studies with fun1 and dne, a mutant deficient in the floral inhibitor, show that the roles of phyA in seedling deetiolation and in day-length detection are genetically separable and that the phyA-mediated promotion of flowering results from a reduction in the synthesis or transport of the floral inhibitor.


Plant Physiology | 1994

Branching Mutant rms-2 in Pisum sativum (Grafting Studies and Endogenous Indole-3-Acetic Acid Levels)

Christine A. Beveridge; John Ross; Ian C. Murfet

Isogenic lines of pea (Pisum sativum L.) were used to determine the physiological site of action of the Rms-2 gene, which maintains apical dominance, and its effect on endogenous free indole-3-acetic acid (IAA) levels. In mutant rms-2 scions, which normally produce lateral branches below node 3 and above node 7, apical dominance was almost fully restored by grafting to Rms-2 (wild-type) stocks. In the reciprocal grafts, rms-2 stocks did not promote branching in wild-type shoots. Together, these results suggest that the Rms-2 gene inhibits branching in the shoot of pea by controlling the synthesis of a translocatable (hormone-like) substance that is produced in the roots and/or cotyledons and in the shoot. At all stages, including the stage at which aerial lateral buds commence outgrowth, the level of IAA in rms-2 shoots was elevated (up to 5-fold) in comparison with that in wild-type shoots. The internode length of rms-2 plants was 40% less than in wild-type plants, and the mutant plants allocated significantly more dry weight to the shoot than to the root in comparison with wild-type plants. Grafting to wild-type stocks did not normalize IAA levels or internode length in rms-2 scions, even though it inhibited branching, suggesting that the involvement of Rms-2 in the control of IAA level and internode length may be confined to processes in the shoot.


Trends in Plant Science | 1997

The genetic control of flowering in pea

James L. Weller; James B. Reid; Scott A. Taylor; Ian C. Murfet

The transition from vegetative to reproductive growth is a key event during plant development. In many species, the timing of this change depends on the length and spectral quality of the photoperiod. Extensive research supports the notion that the site of light perception in the leaf and the site of flower initiation in the apex are linked by the action of mobile, hormone-like substances. Physiological characterization of flowering mutants in the garden pea has identified two distinct mobile regulators of flowering produced in the leafy shoot — a floral stimulus and an inhibitor. The stimulus is specific to the flowering process and is thought to be constitutively produced. In contrast, the inhibitor affects both reproductive and vegetative growth and is strongly regulated. Photoperiod sensitivity is mainly conferred by a phytochrome A-mediated reduction in inhibitor level.


The Plant Cell | 2011

The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod

Valérie Hecht; Rebecca E. Laurie; Jacqueline K. Vander Schoor; Stephen Ridge; Claire L. Knowles; Lim Chee Liew; Frances C. Sussmilch; Ian C. Murfet; James L. Weller

The pea flowering gene GIGAS regulates a mobile flowering signal and is essential for flowering under long days but not for the ability to respond to photoperiod. This study characterizes the FLOWERING LOCUS T (FT) gene family in pea, identifies one gene (FTa1) as GIGAS, and associates another gene (FTb2) with a second mobile signal and a broader role in photoperiod responsiveness. Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.


The Plant Cell | 2001

Stamina pistilloida, the Pea Ortholog of Fim and UFO, Is Required for Normal Development of Flowers, Inflorescences, and Leaves

Scott A. Taylor; Julie Hofer; Ian C. Murfet

Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2—mutations known to influence leaf, inflorescence, and flower development in pea—suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea.


Plant Physiology | 2002

PROLIFERATING INFLORESCENCE MERISTEM, a MADS-Box Gene That Regulates Floral Meristem Identity in Pea

Scott A. Taylor; Julie Hofer; Ian C. Murfet; John Sollinger; Susan R. Singer; Maggie R. Knox; T. H. Noel Ellis

SQUAMOSA and APETALA1 are floral meristem identity genes from snapdragon (Antirrhinum majus) and Arabidopsis, respectively. Here, we characterize the floral meristem identity mutation proliferating inflorescence meristem(pim) from pea (Pisum sativum) and show that it corresponds to a defect in the PEAM4 gene, a homolog of SQUAMOSA and APETALA1. ThePEAM4 coding region was deleted in thepim-1 allele, and this deletion cosegregated with thepim-1 mutant phenotype. The pim-2 allele carried a nucleotide substitution at a predicted 5′ splice site that resulted in mis-splicing of pim-2 mRNA. PCR products corresponding to unspliced and exon-skipped mRNA species were observed. The pim-1 and pim-2 mutations delayed floral meristem specification and altered floral morphology significantly but had no observable effect on vegetative development. These floral-specific mutant phenotypes and the restriction ofPIM gene expression to flowers contrast with other known floral meristem genes in pea that additionally affect vegetative development. The identification of PIM provides an opportunity to compare pathways to flowering in species with different inflorescence architectures.


Plant Physiology | 2008

The Pea DELLA Proteins LA and CRY Are Important Regulators of Gibberellin Synthesis and Root Growth

Diana E. Weston; Robert C. Elliott; Diane R. Lester; Catherine Rameau; James B. Reid; Ian C. Murfet; John Ross

The theory that bioactive gibberellins (GAs) act as inhibitors of inhibitors of plant growth was based originally on the slender pea (Pisum sativum) mutant (genotype la cry-s), but the molecular nature of this mutant has remained obscure. Here we show that the genes LA and CRY encode DELLA proteins, previously characterized in other species (Arabidopsis [Arabidopsis thaliana] and several grasses) as repressors of growth, which are destabilized by GAs. Mutations la and cry-s encode nonfunctional proteins, accounting for the fact that la cry-s plants are extremely elongated, or slender. We use the la and cry-s mutations to show that in roots, DELLA proteins effectively promote the expression of GA synthesis genes, as well as inhibit elongation. We show also that one of the DELLA-regulated genes is a second member of the pea GA 3-oxidase family, and that this gene appears to play a major role in pea roots.

Collaboration


Dive into the Ian C. Murfet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Ross

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Se Morris

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eloise Foo

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge