Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian C. Rutt is active.

Publication


Featured researches published by Ian C. Rutt.


Journal of Geophysical Research | 2009

The Glimmer community ice sheet model

Ian C. Rutt; Magnus Hagdorn; Nicholas R. J. Hulton; Antony J. Payne

[1] We present a detailed description of the Glimmer ice sheet model, comprising the physics represented in the model and the numerical techniques used. Established methods are combined with good software design to yield an adaptable and widely applicable model. A flexible framework for coupling Glimmer to global climate forcing is also described. Testing and benchmarking is of crucial importance if the outputs of numerical models are to be regarded as credible; we demonstrate that Glimmer performs very well against the well-known EISMINT benchmarks and against other analytical solutions for ice flow. Glimmer therefore represents a well-founded and flexible framework for the open-source development of ice sheet modeling.


Geophysical Research Letters | 2007

Impact of model physics on estimating the surface mass balance of the Greenland ice sheet

Marion Bougamont; Jonathan L. Bamber; Jeff Ridley; Rupert Gladstone; Wouter Greuell; Edward Hanna; Anthony Payne; Ian C. Rutt

Long-term predictions of sea level rise from increased Greenland ice sheet melting have been derived using Positive Degree Day models only. It is, however, unknown precisely what uncertainties are associated with applying this simple surface melt parameterization for future climate. We compare the behavior of a Positive Degree Day and Energy Balance/ Snowpack model for estimating the surface mass balance of the Greenland ice sheet under a warming climate. Both models were first tuned to give similar values for present-day mass balance using 10 years of ERA-40 climatology and were then run for 300 years, forced with the output of a GCM in which atmospheric CO2 increased to 4 times preindustrial levels. Results indicate that the Positive Degree Day model is more sensitive to climate warming than the Energy Balance model, generating annual runoff rates almost twice as large for a fixed ice sheet geometry. Roughly half of this difference was due to differences in the volume of melt generated and half was due to differences in refreezing rates in the snowpack. Our results indicate that the modeled snowpack properties evolve on a multidecadal timescale to changing climate, with a potentially large impact on the mass balance of the ice sheet; an evolution that was absent from the Positive Degree Day model. Copyright 2007 by the American Geophysical Union.


Annals of Glaciology | 2012

Testing the effect of water in crevasses on a physically based calving model

S Cook; Thomas Zwinger; Ian C. Rutt; Shad O'Neel; Tavi Murray

Abstract A new implementation of a calving model, using the finite-element code Elmer, is presented and used to investigate the effects of surface water within crevasses on calving rate. For this work, we use a two-dimensional flowline model of Columbia Glacier, Alaska. Using the glacier’s 1993 geometry as a starting point, we apply a crevasse-depth calving criterion, which predicts calving at the location where surface crevasses cross the waterline. Crevasse depth is calculated using the Nye formulation. We find that calving rate in such a regime is highly dependent on the depth of water in surface crevasses, with a change of just a few metres in water depth causing the glacier to change from advancing at a rate of 3.5 kma–1 to retreating at a rate of 1.9 km a–1. These results highlight the potential for atmospheric warming and surface meltwater to trigger glacier retreat, but also the difficulty of modelling calving rates, as crevasse water depth is difficult to determine either by measurement in situ or surface mass-balance modelling.


Journal of Geophysical Research | 2015

Modeling of subglacial hydrological development following rapid supraglacial lake drainage

C. F. Dow; Bernd Kulessa; Ian C. Rutt; Victor C. Tsai; Sam Pimentel; S. H. Doyle; D. van As; Katrin Lindbäck; Rickard Pettersson; G. A. Jones; Alun Hubbard

The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited


Journal of Geophysical Research | 2015

Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland

Tavi Murray; N. Selmes; Timothy D. James; Stuart Edwards; Ian Martin; Timothy O'Farrell; Robin Aspey; Ian C. Rutt; Meredith Nettles; Tim Baugé

Abstract During summer 2013 we installed a network of 19 GPS nodes at the ungrounded margin of Helheim Glacier in southeast Greenland together with three cameras to study iceberg calving mechanisms. The network collected data at rates up to every 7 s and was designed to be robust to loss of nodes as the glacier calved. Data collection covered 55 days, and many nodes survived in locations right at the glacier front to the time of iceberg calving. The observations included a number of significant calving events, and as a consequence the glacier retreated ~1.5 km. The data provide real‐time, high‐frequency observations in unprecedented proximity to the calving front. The glacier calved by a process of buoyancy‐force‐induced crevassing in which the ice downglacier of flexion zones rotates upward because it is out of buoyant equilibrium. Calving then occurs back to the flexion zone. This calving process provides a compelling and complete explanation for the data. Tracking of oblique camera images allows identification and characterisation of the flexion zones and their propagation downglacier. Interpretation of the GPS data and camera data in combination allows us to place constraints on the height of the basal cavity that forms beneath the rotating ice downglacier of the flexion zone before calving. The flexion zones are probably formed by the exploitation of basal crevasses, and theoretical considerations suggest that their propagation is strongly enhanced when the glacier base is deeper than buoyant equilibrium. Thus, this calving mechanism is likely to dominate whenever such geometry occurs and is of increasing importance in Greenland.


IEEE Sensors Journal | 2014

A High-Resolution Sensor Network for Monitoring Glacier Dynamics

Ian Martin; Timothy O'Farrell; Robin Aspey; Stuart Edwards; Timothy D. James; Pavel Loskot; Tavi Murray; Ian C. Rutt; Nicholas Selmes; Timothy Bauge

This paper provides an overview of a wide area wireless sensor network that was deployed on the calving front of the Helheim Glacier in Greenland during the summer of 2013. The purpose of the network was to measure the flow rate of the glacier using accurate satellite positioning data. The challenge in this extreme environment was to collect data in real time at the calving edge of the glacier. This was achieved using a solar powered 2.4-GHz Zigbee wireless sensor network operated in a novel hybrid cellular/mesh access architecture consisting of ice nodes communicating with base stations placed on the rock adjacent to the glacier. This highly challenging transmission environment created substantial signal outage conditions, which were successfully mitigated by a radio network diversity scheme. The network development and measurement campaign were highly successful yielding significant results on glacial dynamics associated with climate change.


Nature Communications | 2016

Massive subsurface ice formed by refreezing of ice-shelf melt ponds

Bryn Hubbard; Adrian Luckman; David W. Ashmore; Suzanne Bevan; Bernd Kulessa; Peter Kuipers Munneke; Morgane Philippe; Daniela Jansen; Adam D. Booth; Heïdi Sevestre; Jean-Louis Tison; Martin O’Leary; Ian C. Rutt

Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.


Science | 2015

Reverse glacier motion during iceberg calving and the cause of glacial earthquakes

Tavi Murray; Meredith Nettles; N. Selmes; Cathles Lm; Justin Burton; Timothy D. James; Stuart Edwards; Ian Martin; Timothy O'Farrell; Robin Aspey; Ian C. Rutt; Timothy Bauge

Movers and shakers When the edge of an ice sheet breaks off and falls into the sea (calves), the remaining section of the ice sheet moves backward and down and can suffer a glacial earthquake. Murray et al. studied calving from Greenlands Helheim Glacier. The forces that cause the change in the motion of the ice sheet at its terminus also trigger the accompanying earthquakes. Because these seismic signals can be detected by instruments located all over the globe, it should be possible to use these glacial earthquakes as proxies for glacier calving. Science, this issue p. 305 Iceberg calving causes glacial earthquakes and reverses ice sheet motion. Nearly half of Greenland’s mass loss occurs through iceberg calving, but the physical mechanisms operating during calving are poorly known and in situ observations are sparse. We show that calving at Greenland’s Helheim Glacier causes a minutes-long reversal of the glacier’s horizontal flow and a downward deflection of its terminus. The reverse motion results from the horizontal force caused by iceberg capsize and acceleration away from the glacier front. The downward motion results from a hydrodynamic pressure drop behind the capsizing berg, which also causes an upward force on the solid Earth. These forces are the source of glacial earthquakes, globally detectable seismic events whose proper interpretation will allow remote sensing of calving processes occurring at increasing numbers of outlet glaciers in Greenland and Antarctica.


Journal of Geophysical Research | 2016

Annual down-glacier drainage of lakes and water-filled crevasses at Helheim Glacier, southeast Greenland

Alistair Everett; Tavi Murray; N. Selmes; Ian C. Rutt; Adrian Luckman; Tony D. James; Caroline C. Clason; Martin O'Leary; Harshinie Karunarathna; V. Moloney; Dominic E. Reeve

Supraglacial lake drainage events are common on the Greenland Ice Sheet. Observations on the west coast typically show an up-glacier progression of drainage as the annual melt extent spreads inland. We use a suite of remote sensing and modelling techniques in order to study a series of lakes and water-filled crevasses within 20km of the terminus of Helheim Glacier, south east Greenland. Automatic classification of surface water areas shows a down-glacier progression of drainage, which occurs in the majority of years between 2007 and 2014. We demonstrate that a linear elastic fracture mechanics model can reliably predict the drainage of the uppermost supraglacial lake in the system, but cannot explain the pattern of filling and draining observed in areas of surface water downstream. We propose that the water levels in crevasses downstream of the supraglacial lake can be explained by a transient high-pressure wave passing through the subglacial system following the lake drainage. We support this hypothesis with analysis of the subglacial hydrological conditions, which can explain both the position and interannual variation in filling order of these crevasses. Similar behaviour has been observed in association with jokulhaups, surging glaciers, and Antarctic subglacial lakes, but has not previously been observed on major outlets of the Greenland Ice Sheet. Our results suggest that the behaviour of near-terminus surface water may differ considerably from that of inland supraglacial lakes, with the potential for basal water pressures to influence the presence of surface water in crevasses close to the terminus of tidewater glaciers.


European Journal of Computational Mechanics | 2016

Investigation of wind and tidal forcing on stratified flows in Greenland fjords with TELEMAC-3D

Violeta Moloney; Harshinie Karunarathna; Tavi Murray; Ian C. Rutt; Alistair Everett; Dominic E. Reeve

Abstract Many researchers have analysed the effect of wind on fjord dynamics by using two-dimensional numerical models. This paper investigates the wind and tidal forcing effects on the strong stratification and circulation by application of the three-dimensional model TELEMAC-3D. The capability of the model to reproduce the physical processes has been investigated by applying it to Sermilik Fjord, Greenland. This study shows that the major changes in the fjord dynamics are wind induced. Any changes in the wind speed have an instant impact on the water surface velocities. Also, the diffusively driven circulation produced by the horizontal pressure gradients at coast plays an important role in fjord dynamics. After calibration, the tidal model produced matching results with the measured wave height. The tidal analysis shows that the strength and direction of the tidal currents are sensitive to any changes in the width and shape of the domain. The effect of the tidal propagation on the salinity profile has been shown to play an important role, with salinity picks being 5–6 h behind the tidal flood and ebb picks, along the wind forcing, on the fjord circulation. TELEMAC-3D is a suitable model to simulate accurately such complicated dynamics as in presented case study.

Collaboration


Dive into the Ian C. Rutt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin Aspey

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge