Ian C. Wenker
University of Connecticut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian C. Wenker.
Experimental Physiology | 2011
Daniel K. Mulkey; Ian C. Wenker
Central chemoreception is the mechanism by which CO2/pH‐sensitive neurons (i.e. chemoreceptors) regulate breathing, presumably in response to changes in tissue pH. A region of the brainstem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception; select neurons (i.e. chemoreceptors) in this region sense changes in CO2/H+ and send excitatory glutamatergic drive to respiratory centres to modulate the depth and frequency of breathing. Purinergic signalling may also contribute to chemoreception; for instance, it was shown in vivo that CO2/H+ facilitates ATP release within the RTN to stimulate breathing, and recent evidence suggests that CO2/H+‐sensitive RTN astrocytes are the source of this purinergic drive to breathe. In this review, we summarize evidence that RTN astrocytes sense changes in CO2/H+, identify mechanisms that are likely to confer CO2/H+ sensitivity to RTN astrocytes, including inhibition of heteromeric Kir4.1–Kir5.1 channels and activation of a depolarizing inward current generated by the sodium bicarbonate cotransporter, and discuss the extent to which astrocytes contribute to respiratory drive.
The Journal of Neuroscience | 2012
Joanna M. Hawryluk; Thiago S. Moreira; Ana C. Takakura; Ian C. Wenker; Anastasios V. Tzingounis; Daniel K. Mulkey
Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H+ changes. Their activity is also sensitive to neuromodulatory inputs from multiple respiratory centers, and thus they serve as a key nexus of respiratory control. However, molecular mechanisms that control their activity and susceptibility to neuromodulation are unknown. Here, we show in vitro and in vivo that KCNQ channels are critical determinants of RTN neural activity. In particular, we find that pharmacological block of KCNQ channels (XE991, 10 μm) increased basal activity and CO2 responsiveness of RTN neurons in rat brain slices, whereas KCNQ channel activation (retigabine, 2–40 μm) silenced these neurons. Interestingly, we also find that KCNQ and apamin-sensitive SK channels act synergistically to regulate firing rate of RTN chemoreceptors; simultaneous blockade of both channels led to a increase in CO2 responsiveness. Furthermore, we also show that KCNQ channels but not SK channels are downstream effectors of serotonin modulation of RTN activity in vitro. In contrast, inhibition of KCNQ channel did not prevent modulation of RTN activity by Substance P or thyrotropin-releasing hormone, previously identified neuromodulators of RTN chemoreception. Importantly, we also show that KCNQ channels are critical for RTN activity in vivo. Inhibition of KCNQ channels lowered the CO2 threshold for phrenic nerve discharge in anesthetized rats and decreased the ventilatory response to serotonin in awake and anesthetized animals. Given that serotonergic dysfunction may contribute to respiratory failure, our findings suggest KCNQ channels as a new therapeutic avenue for respiratory complications associated with multiple neurological disorders.
Hypertension | 2013
Ian C. Wenker; Cleyton R. Sobrinho; Ana C. Takakura; Daniel K. Mulkey; Thiago S. Moreira
Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38±6%), and blood pressure (23±1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor–mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.
Journal of Neurophysiology | 2012
Ian C. Wenker; Justin P. Benoit; Xinnian Chen; Hattie Liu; Richard L. Horner; Daniel K. Mulkey
Nitric oxide (NO) is an important signaling molecule that regulates numerous physiological processes, including activity of respiratory motoneurons. However, molecular mechanism(s) underlying NO modulation of motoneurons remain obscure. Here, we used a combination of in vivo and in vitro recording techniques to examine NO modulation of motoneurons in the hypoglossal motor nucleus (HMN). Microperfusion of diethylamine (DEA; an NO donor) into the HMN of anesthetized adult rats increased genioglossus muscle activity. In the brain slice, whole cell current-clamp recordings from hypoglossal motoneurons showed that exposure to DEA depolarized membrane potential and increased responsiveness to depolarizing current injections. Under voltage-clamp conditions, we found that NO inhibited a Ba(2+)-sensitive background K(+) conductance and activated a Cs(+)-sensitive hyperpolarization-activated inward current (I(h)). When I(h) was blocked with Cs(+) or ZD-7288, the NO-sensitive K(+) conductance exhibited properties similar to TWIK-related acid-sensitive K(+) (TASK) channels, i.e., voltage independent, resistant to tetraethylammonium and 4-aminopyridine but inhibited by methanandamide. The soluble guanylyl cyclase blocker 1H-(1,2,4)oxadiazole(4,3-a)quinoxaline-1-one (ODQ) and the PKG blocker KT-5823 both decreased NO modulation of this TASK-like conductance. To characterize modulation of I(h) in relative isolation, we tested effects of NO in the presence of Ba(2+) to block TASK channels. Under these conditions, NO activated both the instantaneous (I(inst)) and time-dependent (I(ss)) components of I(h). Interestingly, at more hyperpolarized potentials NO preferentially increased I(inst). The effects of NO on I(h) were retained in the presence of ODQ and blocked by the cysteine-specific oxidant N-ethylmaleimide. These results suggest that NO activates hypoglossal motoneurons by cGMP-dependent inhibition of a TASK-like current and S-nitrosylation-dependent activation of I(h).
eLife | 2017
Virginia E. Hawkins; Ana C. Takakura; Ashley Trinh; Milene R. Malheiros-Lima; Colin M Cleary; Ian C. Wenker; Todd Dubreuil; Elliot M Rodriguez; Mark T. Nelson; Thiago S. Moreira; Daniel K. Mulkey
Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe. DOI: http://dx.doi.org/10.7554/eLife.25232.001
Acta Physiologica | 2014
Mirian Bassi; Werner Issao Furuya; José Vanderlei Menani; Debora S. A. Colombari; J.M. do Carmo; A.A. da Silva; John E. Hall; Thiago S. Moreira; Ian C. Wenker; Daniel K. Mulkey; Eduardo Colombari
Leptin, an adipocyte‐derived hormone, is suggested to participate in the central control of breathing. We hypothesized that leptin may facilitate ventilatory responses to chemoreflex activation by acting on respiratory nuclei of the ventrolateral medulla. The baseline ventilation and the ventilatory responses to CO2 were evaluated before and after daily injections of leptin into the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) for 3 days in obese leptin‐deficient (ob/ob) mice.
Journal of Applied Physiology | 2010
Daniel K. Mulkey; Ian C. Wenker; Orsolya Kréneisz
Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in response to changes in tissue pH. A region of the brain stem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception (23), and recent evidence suggests that RTN chemoreception involves two interrelated mechanisms: H+-mediated activation of pH-sensitive neurons (38) and purinergic signaling (19), possibly from pH-sensitive glial cells. A third, potentially important, aspect of RTN chemoreception is the regulation of blood flow, which is an important determinate of tissue pH and consequently chemoreceptor activity. It is well established in vivo that changes in cerebral blood flow can profoundly affect the chemoreflex (2); e.g., limiting blood flow by vasoconstriction acidifies tissue pH and increases the ventilatory response to CO2, whereas vasodilation can wash out metabolically produced CO2 from tissue to increase tissue pH and decrease the stimulus at chemoreceptors. In this review, we will summarize the defining characteristics of pH-sensitive neurons and discuss potential contributions of pH-sensitive glial cells as both a source of purinergic drive to pH-sensitive neurons and a modulator of vasculature tone.
Journal of Neurophysiology | 2010
Ian C. Wenker; Orsolya Kréneisz; Akiko Nishiyama; Daniel K. Mulkey
Journal of Neurophysiology | 2010
Ian C. Wenker
The FASEB Journal | 2013
Mirian Bassi; Werner Issao Furuya; José Vanderlei Menani; Debora S. A. Colombari; Jussara M. do Carmo; Alexandre da Silva; John E. Hall; Ian C. Wenker; Daniel K. Mulkey; Eduardo Colombari