Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian D. Hutchinson is active.

Publication


Featured researches published by Ian D. Hutchinson.


American Journal of Sports Medicine | 2014

Restoration of the Meniscus Form and Function

Ian D. Hutchinson; Cathal J. Moran; Hollis G. Potter; Russell F. Warren; Scott A. Rodeo

Over the past 2 decades there has been a profound shift in our perception of the role of the meniscus in the knee joint. Orthopaedic opinion now favors salvaging and restoring the damaged meniscus where possible. Basic science is characterizing its form (anatomy) and functionality (biological and biomechanical) in an attempt to understand the effect of meniscal injury and repair on the knee joint as a whole. The meniscus is a complex tissue and has warranted extensive basic science, translational, and clinical research to identify techniques to augment healing and even replace the meniscus. The application of quantitative magnetic resonance image sequencing to the meniscus and articular cartilage of the affected compartment promises to add a quantifiable outcome measure to the body of clinical evidence that supports restoration of the meniscus. This article discusses the recent advances and outcomes in the pursuit of meniscal restoration with particular focus on the use of augmentation strategies in meniscal repair, meniscal imaging, and translational strategies.


American Journal of Sports Medicine | 2014

Bone Plug Versus Suture-Only Fixation of Meniscal Grafts Effect on Joint Contact Mechanics During Simulated Gait

Hongsheng Wang; Albert O. Gee; Ian D. Hutchinson; Kirsten Stoner; Russell F. Warren; Tony Chen; Suzanne A. Maher

Background: Meniscus allograft transplantation (MAT) is primarily undertaken to relieve the symptoms associated with meniscal deficiencies. However, its ability to restore normal knee joint contact mechanics under physiological loads is still unclear. Purpose: To quantify the dynamic contact mechanics associated with 2 commonly used fixation techniques in MAT of the medial compartment: transosseous suture fixation via bone plugs and suture-only fixation at the horns. Study Design: Controlled laboratory study. Methods: Physiological loads to mimic gait were applied across 7 human cadaveric knees on a simulator. A sensor placed on the medial tibial plateau recorded dynamic contact stresses under the following conditions: (1) intact meniscus, (2) MAT using transosseous suture fixation via bone plugs at the anterior and posterior horns, (3) MAT using suture-only fixation, and (4) total medial meniscectomy. A “remove-replace” procedure was performed to place the same autograft for both MAT conditions to minimize the variability in graft size, geometry, and material property and to isolate the effects of the fixation technique. Contact stress, contact area, and weighted center of contact stress (WCoCS) were quantified on the medial plateau throughout the stance phase. Results: Knee joint contact mechanics were sensitive to the meniscal condition primarily during the first half of the gait cycle. After meniscectomy, the mean peak contact stress increased from 4.2 ± 1.2 MPa to 6.2 ± 1.0 MPa (P = .04), and the mean contact area decreased from 546 ± 132 mm2 to 192 ± 122 mm2 (P = .01) compared with the intact meniscus during early stance (14% of the gait cycle). After MAT, the mean contact stress significantly decreased with bone plug fixation (5.0 ± 0.7 MPa) but not with suture-only fixation (5.9 ± 0.7 MPa). Both fixation techniques partially restored the contact area, but bone plug fixation restored it closer to the intact condition. The location of WCoCS in the central cartilage region (not covered by the meniscus) shifted peripherally throughout the stance phase. Bone plug fixation exhibited correction to this peripheral offset, but suture-only fixation did not. Conclusion: Under dynamic loading, transosseous fixation at the meniscal horns provides superior load distribution at the involved knee compartment after meniscal transplantation compared with suture-only fixation. Particular attention should be directed to the ability of medial MAT to function during the early stance phase. Clinical Relevance: Transosseous fixation via bone plugs provides superior load distribution of a transplanted meniscal allograft compared with suture fixation alone at time zero.


Journal of Knee Surgery | 2014

Can Platelet-Rich Plasma Enhance Anterior Cruciate Ligament and Meniscal Repair?

Ian D. Hutchinson; Scott A. Rodeo; Gabriel S. Perrone; Martha M. Murray

The use of platelet-rich plasma (PRP) to improve clinical outcome following a soft tissue injury, regeneration, and repair has been the subject of intense investigation and discussion. This article endeavors to relate clinical and basic science strategies focused on biological augmentation of the healing response in anterior cruciate ligament (ACL) and meniscus repair and replacement using PRP. Therein, a translational feedback loop is created in the literature and targeted towards the entire multidisciplinary team. Ultimately, it is hoped that the theoretical benefits of PRP on soft-tissue interfacial healing will emerge clinically following a careful, focused characterization at the benchtop, and prospective randomized controlled clinical study.


Journal of Biomechanical Engineering-transactions of The Asme | 2014

Using a Statistically Calibrated Biphasic Finite Element Model of the Human Knee Joint to Identify Robust Designs for a Meniscal Substitute

Erin R. Leatherman; Hongqiang Guo; Susannah L. Gilbert; Ian D. Hutchinson; Suzanne A. Maher; Thomas J. Santner

This paper describes a methodology for selecting a set of biomechanical engineering design variables to optimize the performance of an engineered meniscal substitute when implanted in a population of subjects whose characteristics can be specified stochastically. For the meniscal design problem where engineering variables include aspects of meniscal geometry and meniscal material properties, this method shows that meniscal designs having simultaneously large radial modulus and large circumferential modulus provide both low mean peak contact stress and small variability in peak contact stress when used in the specified subject population. The method also shows that the mean peak contact stress is relatively insensitive to meniscal permeability, so the permeability used in the manufacture of a meniscal substitute can be selected on the basis of manufacturing ease or cost. This is a multiple objective problem with the mean peak contact stress over the population of subjects and its variability both desired to be small. The problem is solved by using a predictor of the mean peak contact stress across the tibial plateau that was developed from experimentally measured peak contact stresses from two modalities. The first experimental modality provided computed peak contact stresses using a finite element computational simulator of the dynamic tibial contact stress during axial dynamic loading. A small number of meniscal designs with specified subject environmental inputs were selected to make computational runs and to provide training data for the predictor developed below. The second experimental modality consisted of measured peak contact stress from a set of cadaver knees. The cadaver measurements were used to bias-correct and calibrate the simulator output. Because the finite element simulator is expensive to evaluate, a rapidly computable (calibrated) Kriging predictor was used to explore extensively the contact stresses for a wide range of meniscal engineering inputs and subject variables. The predicted values were used to determine the Pareto optimal set of engineering inputs to minimize peak contact stresses in the targeted population of subjects.


Journal of Biomechanics | 2014

Image based weighted center of proximity versus directly measured knee contact location during simulated gait

Hongsheng Wang; Tony Chen; Ian D. Hutchinson; Susannah L. Gilbert; Dan Choi; Russell F. Warren; Scott A. Rodeo; Suzanne A. Maher

To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities-using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (p<0.01, 95% confidence interval of Pearson׳s coefficient r>0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (p>0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction.


Jbjs reviews | 2016

Nonsteroidal Anti-Inflammatory Drugs and Bone-Healing: A Systematic Review of Research Quality.

Alejandro Marquez-Lara; Ian D. Hutchinson; Fiesky A. Nunez; Thomas L. Smith; Anna N. Miller

Background: Nonsteroidal anti‐inflammatory drugs (NSAIDs) are often avoided by orthopaedic surgeons because of their possible influence on bone‐healing. This belief stems from multiple studies, in particular animal studies, that show delayed bone‐healing or nonunions associated with NSAID exposure. The purpose of this review was to critically analyze the quality of published literature that evaluates the impact of NSAIDs on clinical bone‐healing. Methods: A MEDLINE and Embase search was conducted to identify all articles relating to bone and fracture‐healing and the utilization of NSAIDs. All human studies, including review articles, were identified for further analysis. Non‐English‐language manuscripts and in vitro and animal studies were excluded. A total of twelve clinical articles and twenty‐four literature reviews were selected for analysis. The quality of the clinical studies was assessed with a modified Coleman Methodology Score with emphasis on the NSAID utilization. Review articles were analyzed with regard to variability in the cited literature and final conclusions. Results: The mean modified Coleman Methodology Score (and standard deviation) was significantly lower (p = 0.032) in clinical studies that demonstrated a negative effect of NSAIDs on bone‐healing (40.0 ± 14.3 points) compared with those that concluded that NSAIDs were safe (58.8 ± 10.3 points). Review articles also demonstrated substantial variability in the number of cited clinical studies and overall conclusions. There were only two meta‐analyses and twenty‐two narrative reviews. The mean number (and standard deviation) of clinical studies cited was significantly greater (p = 0.008) for reviews that concluded that NSAIDs were safe (8.0 ± 4.8) compared with those that recommended avoiding them (2.1 ± 2.1). Unanimously, all reviews admitted to the need for prospective randomized controlled trials to help clarify the effects of NSAIDs on bone‐healing. Conclusions: This systematic literature review highlights the great variability in the interpretation of the literature addressing the impact of NSAIDs on bone‐healing. Unfortunately, there is no consensus regarding the safety of NSAIDs following orthopaedic procedures, and future studies should aim for appropriate methodological designs to help to clarify existing discrepancies to improve the quality of care for orthopaedic patients. Clinical Relevance: This systematic review highlights the limitations in the current understanding of the effects of NSAIDs on bone healing. Thus, withholding these medications does not have any proven scientific benefit to patients and may even cause harm by increasing narcotic requirements in cases in which they could be beneficial for pain management. This review should encourage further basic‐science and clinical studies to clarify the risks and benefits of anti‐inflammatory medications in the postoperative period, with the aim of improving patient outcomes.


Osteoarthritis and Cartilage | 2015

Altered regional loading patterns on articular cartilage following meniscectomy are not fully restored by autograft meniscal transplantation.

Hongsheng Wang; Tony Chen; Albert O. Gee; Ian D. Hutchinson; Kirsten Stoner; Russell F. Warren; Scott A. Rodeo; Suzanne A. Maher

OBJECTIVE To quantify the changes in regional dynamic loading patterns on tibial articular cartilage during simulated walking following medial meniscectomy and meniscal transplantation. METHODS Seven fresh frozen human cadaveric knees were tested under multidirectional loads mimicking the activity of walking, while the contact stresses on the tibial plateau were synchronously recorded using an electronic sensor. Each knee was tested for three conditions: intact meniscus, medial meniscectomy, and meniscal transplantation. The loading profiles at different locations were assessed and common loading patterns were identified at different sites of the tibial plateau using an established numerical algorithm. RESULTS Three regional patterns were found on the tibial plateau of intact knees. Following medial meniscectomy, the area of the first pattern which was located at the posterior aspect of the medial plateau was significantly reduced, while the magnitude of peak load was significantly increased by 120%. The second pattern which was located at the central-posterior aspects of the lateral plateau shifted anteriorly and laterally without changing its magnitude. The third pattern in the cartilage-to-cartilage contact region of the medial plateau was absent following meniscectomy. Meniscal transplantation largely restored the first pattern, but it did not restore the other two patterns. CONCLUSION There are site-dependent changes in regional loading patterns on both the medial and lateral tibial plateau following medial meniscectomy. Even when a meniscal autograft is used where the geometry and material properties are kept constant, the only region in which the loading pattern is restored is at posterior aspect of the medial plateau.


American Journal of Sports Medicine | 2014

Knee Moment and Shear Force Are Correlated With Femoral Tunnel Orientation After Single-Bundle Anterior Cruciate Ligament Reconstruction

Hongsheng Wang; James E. Fleischli; Ian D. Hutchinson; Naiquan Nigel Zheng

Background: Increasing evidence has shown that anatomic single-bundle anterior cruciate ligament reconstruction (ACLR) better restores normal knee kinematics and functionality than nonanatomic ACLR. Whether anatomic reconstruction results in better knee kinetics during daily activities has not been fully investigated. Purpose: To assess the relationship between femoral tunnel angle and kinetic parameters of the knee joint during walking after single-bundle ACLR and to compare the radiographic and kinetic results of patients who underwent anatomic ACLR with those of patients who underwent nonanatomic ACLR. Study Design: Controlled laboratory study. Methods: Twenty-one patients who underwent unilateral ACLR were recruited, and 20 healthy subjects from a previous study were used as a control group. All surgical procedures were performed by a single surgeon, 11 using the transtibial (TT) technique and 10 using the anteromedial portal (AMP) technique. Femoral tunnel orientation was measured from posterior-to-anterior radiographs. Dynamic knee joint moments and shear forces during gait were evaluated using 3-dimensional motion analysis and inverse dynamics. Relationships between femoral tunnel angles and kinetic results were evaluated via linear regression. Results were compared between 2 ACLR groups and controls using 1-way analysis of variance. Results: Femoral tunnel angle had significant correlations with peak external knee flexion moment and posterior shear force during early stance. The TT group had a significantly smaller (more vertical) mean femoral tunnel angle (19.4° ± 4.1°) than the AMP group (36.4° ± 5.8°). Significant reductions were found in the normalized peak external knee flexion moment (TT, 0.15 ± 0.12 Nm/kg·m; AMP, 0.25 ± 0.12 Nm/kg·m; control, 0.25 ± 0.16 Nm/kg·m) (P = .032) and posterior shear force (TT, 0.64 ± 0.55 N/kg; AMP, 1.10 ± 0.58 N/kg; control, 1.35 ± 0.55 N/kg) (P = .024) in the TT group compared with controls, but not in the AMP group. Moreover, a significantly greater medial shear force was found in the TT group during the late stance phase (TT, 1.08 ± 0.32 N/kg; AMP, 0.89 ± 0.26 N/kg; control, 0.83 ± 0.22 N/kg) (P = .038). A greater peak external knee adduction moment was found in both ACL groups during the early stance phase (TT, 0.25 ± 0.07 Nm/kg·m; AMP, 0.25 ± 0.07 Nm/kg·m; control, 0.19 ± 0.05 Nm/kg·m) (P < .01). Conclusion: Knee joint kinetic changes are seen within months (~10 months) after ACLR. This study revealed significant relationships between femoral tunnel orientation and postoperative knee joint flexion moment and posterior shear force during walking. The AMP technique provides better restoration of these knee kinetic parameters compared with the TT technique at this postoperative time point. Clinical Relevance: The femoral tunnel angle measured from plain radiographs can be used as an important metric of postoperative knee joint kinetics. This information provides a better understanding of the knee joint’s biomechanical environment after ACLR using commonly used single-bundle techniques.


International Journal of Radiation Biology | 2014

Total-body irradiation produces late degenerative joint damage in rats.

Ian D. Hutchinson; John A. Olson; Carl Alexander Lindburg; Valerie Payne; Boyce Collins; Thomas L. Smith; Michael T. Munley; Kenneth T. Wheeler; Jeffrey S. Willey

Abstract Purpose: Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. Materials and methods: 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV X-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. Results: T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. Conclusions: Late degenerative changes in articular cartilage and bone were observed after total-body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage.


Journal of Bone and Joint Surgery, American Volume | 2015

Biomechanical Basis of Shoulder Osseous Deformity and Contracture in a Rat Model of Brachial Plexus Birth Palsy.

Dustin L. Crouch; Ian D. Hutchinson; Johannes F. Plate; Jennifer Antoniono; Hao Gong; Guohua Cao; Zhongyu Li; Katherine R. Saul

BACKGROUND The purpose of this study was to investigate the relative contributions of two proposed mechanisms, strength imbalance and impaired longitudinal muscle growth, to osseous and postural deformity in a rat model of brachial plexus birth palsy (BPBP). METHODS Thirty-two Sprague-Dawley rat pups were divided into four groups on the basis of surgical interventions to induce a strength imbalance, impaired growth, both a strength imbalance and impaired growth (a combined mechanism), and a sham condition in the left forelimb. Maximum passive external shoulder rotation angle (ERmax) was measured bilaterally at four and eight weeks postoperatively. After the rats were killed at eight weeks, the glenohumeral geometry (on microcomputed tomography) and shoulder muscle architecture properties were measured bilaterally. RESULTS Bilateral muscle mass and optimal length differences were greatest in the impaired growth and combined mechanism groups, which also exhibited >15° lower ERmax (p < 0.05; four weeks postoperatively), 14° to 18° more glenoid declination (p < 0.10), and 0.76 to 0.94 mm more inferior humeral head translation (p < 0.10) on the affected side. Across all four groups, optimal muscle length was significantly correlated with at least one osseous deformity measure for six of fourteen muscle compartments crossing the shoulder on the affected side (p < 0.05). In the strength imbalance group, the glenoid was 5° more inclined and the humeral head was translated 7.5% more posteriorly on the affected side (p < 0.05). CONCLUSIONS Impaired longitudinal muscle growth and shoulder deformity were most pronounced in the impaired growth and combined mechanism groups, which underwent neurectomy. Strength imbalance was associated with osseous deformity to a lesser extent. CLINICAL RELEVANCE Treatments to alleviate shoulder deformity should address mechanical effects of both strength imbalance and impaired longitudinal muscle growth, with an emphasis on developing new treatments to promote growth in muscles affected by BPBP.

Collaboration


Dive into the Ian D. Hutchinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Rodeo

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hongsheng Wang

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Suzanne A. Maher

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Tony Chen

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Hollis G. Potter

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Susannah L. Gilbert

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Albert O. Gee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kirsten Stoner

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Liang Ying

Hospital for Special Surgery

View shared research outputs
Researchain Logo
Decentralizing Knowledge