Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian D. Kerr is active.

Publication


Featured researches published by Ian D. Kerr.


Nature Cell Biology | 2008

The auxin influx carrier LAX3 promotes lateral root emergence

Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze

Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.


The EMBO Journal | 2001

Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle

Mark F. Rosenberg; Giles Velarde; Robert C. Ford; Catherine Martin; G. Berridge; Ian D. Kerr; Richard Callaghan; Andreas Schmidlin; Carol Wooding; Kenneth J. Linton; Christopher F. Higgins

P‐glycoprotein (P‐gp) is an ABC (ATP‐binding cassette) transporter, which hydrolyses ATP and extrudes cytotoxic drugs from mammalian cells. P‐gp consists of two transmembrane domains (TMDs) that span the membrane multiple times, and two cytoplasmic nucleotide‐binding domains (NBDs). We have determined projection structures of P‐gp trapped at different steps of the transport cycle and correlated these structures with function. In the absence of nucleotide, an ∼10 Å resolution structure was determined by electron cryo‐microscopy of two‐dimensional crystals. The TMDs form a chamber within the membrane that appears to be open to the extracellular milieu, and may also be accessible from the lipid phase at the interfaces between the two TMDs. Nucleotide binding causes a repacking of the TMDs and reduction in drug binding affinity. Thus, ATP binding, not hydrolysis, drives the major conformational change associated with solute translocation. A third distinct conformation of the protein was observed in the post‐hydrolytic transition state prior to release of ADP/Pi. Biochemical data suggest that these rearrangements may involve rotation of transmembrane α‐helices. A mechanism for transport is suggested.


The Plant Cell | 2004

Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1

Ranjan Swarup; Joanna Kargul; Alan Marchant; Daniel Zadik; Abidur Rahman; Rebecca F. Mills; Anthony Yemm; Sean T. May; Lorraine E. Williams; Paul A. Millner; Seiji Tsurumi; Ian Moore; Richard M. Napier; Ian D. Kerr; Malcolm J. Bennett

We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain.


Plant Physiology | 2011

Unraveling the Evolution of Auxin Signaling

Ive De Smet; Ute Voß; Steffen Lau; Michael Wilson; Ning Shao; Ruth E. Timme; Ranjan Swarup; Ian D. Kerr; Charlie Hodgman; Ralph Bock; Malcolm J. Bennett; Gerd Jürgens; Tom Beeckman

Auxin signaling is central to plant growth and development, yet hardly anything is known about its evolutionary origin. While the presence of key players in auxin signaling has been analyzed in various land plant species, similar analyses in the green algal lineages are lacking. Here, we survey the key players in auxin biology in the available genomes of Chlorophyta species. We found that the genetic potential for auxin biosynthesis and AUXIN1 (AUX1)/LIKE AUX1- and P-GLYCOPROTEIN/ATP-BINDING CASSETTE subfamily B-dependent transport is already present in several single-celled and colony-forming Chlorophyta species. In addition, our analysis of expressed sequence tag libraries from Coleochaete orbicularis and Spirogyra pratensis, green algae of the Streptophyta clade that are evolutionarily closer to the land plants than those of the Chlorophyta clade, revealed the presence of partial AUXIN RESPONSE FACTORs and/or AUXIN/INDOLE-3-ACETIC ACID proteins (the key factors in auxin signaling) and PIN-FORMED-like proteins (the best-characterized auxin-efflux carriers). While the identification of these possible AUXIN RESPONSE FACTOR- and AUXIN/INDOLE-3-ACETIC ACID precursors and putative PIN-FORMED orthologs calls for a deeper investigation of their evolution after sequencing more intermediate genomes, it emphasizes that the canonical auxin response machinery and auxin transport mechanisms were, at least in part, already present before plants “moved” to land habitats.


The FASEB Journal | 2003

An atomic detail model for the human ATP binding cassette transporter P-glycoprotein derived from disulfide cross-linking and homology modeling

Daniella R. Stenham; Jeff D. Campbell; Mark S.P. Sansom; Christopher F. Higgins; Ian D. Kerr; Kenneth J. Linton

The multidrug resistance P‐glycoprotein mediates the extrusion of chemotherapeutic drugs from cancer cells. Characterization of the drug binding and ATPase activities of the protein have made it the paradigm ATP binding cassette (ABC) transporter. P‐glycoprotein has been imaged at low resolution by electron cryo‐microscopy and extensively analyzed by disulphide cross‐linking, but a high resolution structure solved ab initio remains elusive. Homology models of P‐glycoprotein were generated using the structure of a related prokaryotic ABC transporter, the lipid A transporter MsbA, as a template together with structural data describing the dimer interface of the nucleotide binding domains (NBDs). The first model, which maintained the NBD:transmembrane domain (TMD) interface of MsbA, did not satisfy previously published cross‐linking data. This suggests that either P‐glycoprotein has a very different structure from MsbA or that the published E. coli MsbA structure does not reflect a physiological state. To distinguish these alternatives, we mapped the interface between the two TMDs of P‐glycoprotein experimentally by chemical cross‐linking of introduced triple‐cysteine residues. Based on these data, a plausible atomic model of P‐glycoprotein could be generated using the MsbA template, if the TMDs of MsbA are reoriented with respect to the NBDs. This model will be important for understanding the mechanism of P‐glycoprotein and other ABC transporters.


Biochimica et Biophysica Acta | 2002

Structure and association of ATP-binding cassette transporter nucleotide-binding domains

Ian D. Kerr

ATP-binding cassette transporters are responsible for the uptake and efflux of a multitude of substances across both eukaryotic and prokaryotic membranes. Members of this family of proteins are involved in diverse physiological processes including antigen presentation, drug efflux from cancer cells, bacterial nutrient uptake and cystic fibrosis. In order to understand more completely the role of these multidomain transporters an integrated approach combining structural, pharmacological and biochemical methods is being adopted. Recent structural data have been obtained on the cytoplasmic, nucleotide-binding domains of prokaryotic ABC transporters. This review evaluates both these data and the conflicting implications they have for domain communication in ABC transporters. Areas of biochemical research that attempt to resolve these conflicts will be discussed.


The Journal of Clinical Pharmacology | 2008

P‐glycoprotein: So Many Ways to Turn It On

Richard Callaghan; Emily Crowley; M Biochem; Simon Potter; Ian D. Kerr

Expression of the ABC transporter P‐glycoprotein (P‐gp or ABCB1) is associated with resistance to chemotherapy in cancer. However, early investigations into the regulation of ABCB1 expression revealed that the process is not a classical induction as observed for certain metabolizing enzymes. The process involves the cellular stress response pathway initiated by either inflicted (eg, chemotherapy damage) or endogenous (eg, hypoxia) factors. However, ABCB1 is also expressed in a number of noncancerous tissues. In particular, the protein is found at tissues providing a barrier or secretory function. The localization of ABCB1 in normal tissues will impact significantly on drug pharmacokinetics, in particular the absorption and elimination processes. This review also describes the mechanism underlying ABCB1 expression in noncancerous tissue, a process that does not involve the stress response.


Biophysical Journal | 1996

Water in channel-like cavities: structure and dynamics.

Mark S.P. Sansom; Ian D. Kerr; Jason Breed; Ramasubbu Sankararamakrishnan

Ion channels contain narrow columns of water molecules. It is of interest to compare the structure and dynamics of such intrapore water with those of the bulk solvent. Molecular dynamics simulations of modified TIP3P water molecules confined within channel-like cavities have been performed and the orientation and dynamics of the water molecules analyzed. Channels were modeled as cylindrical cavities with lengths ranging from 15 to 60 A and radii from 3 to 12 A. At the end of the molecular dynamics simulations water molecules were observed to be ordered into approximately concentric cylindrical shells. The waters of the outermost shell were oriented such that their dipoles were on average perpendicular to the normal of the wall of the cavity. Water dynamics were analyzed in terms of self-diffusion coefficients and rotational reorientation rates. For cavities of radii 3 and 6 A, water mobility was reduced relative to that of simulated bulk water. For 9- and 12-A radii confined water molecules exhibited mobilities comparable with that of the bulk solvent. If water molecules were confined within an hourglass-shaped cavity (with a central radius of 3 A increasing to 12 A at either end) a gradient of water mobility was observed along the cavity axis. Thus, water within simple models of transbilayer channels exhibits perturbations of structure and dynamics relative to bulk water. In particular the reduction of rotational reorientation rate is expected to alter the local dielectric constant within a transbilayer pore.


Biophysical Journal | 1994

Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics

Ian D. Kerr; Ramasubbu Sankararamakrishnan; O. S. Smart; Mark S.P. Sansom

A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.


FEBS Letters | 1997

Ion channels formed by HIV-1 Vpu: a modelling and simulation study

A.L Grice; Ian D. Kerr; Mark S.P. Sansom

Vpu is an oligomeric integral membrane protein encoded by HIV‐1 which forms ion channels, each subunit of which contains a single transmembrane helix. Models of Vpu channels formed by bundles of N=4, 5 or 6 transmembrane helices have been developed by restrained molecular dynamics and refined by 100 ps simulations with water molecules within the pore. Pore radius profiles and conductance predictions suggest that the N=5 model corresponds to the predominant channel conductance level of the channel. Potential energy profiles for translation of Na+ or Cl− ions along the Vpu N=5 pore are consistent with the weak cation selectivity of Vpu channels.

Collaboration


Dive into the Ian D. Kerr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Callaghan

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Beth Coyle

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Ramasubbu Sankararamakrishnan

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Janet Storm

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar

Lisa Storer

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Linton

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge