Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Dunham is active.

Publication


Featured researches published by Ian Dunham.


Nature Genetics | 1998

Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy

Berge A. Minassian; Jeffrey R. Lee; Jo-Anne Herbrick; Jack J Huizenga; Sylvia Soder; Andrew J. Mungall; Ian Dunham; Rebecca J. Gardner; Chung-yan G. Fong; Stirling Carpenter; Laura Bannach Jardim; P. Satishchandra; Eva Andermann; O. Carter Snead; I. Lopes-Cendes; Lap-Chee Tsui; Antonio V. Delgado-Escueta; Guy A. Rouleau; Stephen W. Scherer

Laforas disease (LD; OMIM 254780) is an autosomal recessive form of progressive myoclonus epilepsy characterized by seizures and cumulative neurological deterioration. Onset occurs during late childhood and usually results in death within ten years of the first symptoms1,2. With few exceptions, patients follow a homogeneous clinical course despite the existence of genetic heterogeneity 3. Biopsy of various tissues, including brain, revealed characteristic polyglucosan inclusions called Lafora bodies4–8, which suggested LD might be a generalized storage disease6,9. Using a positional cloning approach, we have identified at chromosome 6q24 a novel gene, EPM2A, that encodes a protein with consensus amino acid sequence indicative of a protein tyrosine phosphatase (PTP). mRNA transcripts representing alternatively spliced forms of EPM2A were found in every tissue examined, including brain. Six distinct DNA sequence variations in EPM2A in nine families, and one homozygous microdeletion in another family, have been found to cosegregate with LD. These mutations are predicted to cause deleterious effects in the putative protein product, named laforin, resulting in LD.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Defining functional DNA elements in the human genome

Manolis Kellis; Barbara J. Wold; Michael Snyder; Bradley E. Bernstein; Anshul Kundaje; Georgi K. Marinov; Lucas D. Ward; Ewan Birney; Gregory E. Crawford; Job Dekker; Ian Dunham; Laura Elnitski; Peggy J. Farnham; Elise A. Feingold; Mark Gerstein; Morgan C. Giddings; David M. Gilbert; Thomas R. Gingeras; Eric D. Green; Roderic Guigó; Tim Hubbard; Jim Kent; Jason D. Lieb; Richard M. Myers; Michael J. Pazin; Bing Ren; John A. Stamatoyannopoulos; Zhiping Weng; Kevin P. White; Ross C. Hardison

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.


Nucleic Acids Research | 2010

Ensembl’s 10th year

Paul Flicek; Bronwen Aken; Benoit Ballester; Kathryn Beal; Eugene Bragin; Simon Brent; Yuan Chen; Peter Clapham; Guy Coates; Susan Fairley; Stephen Fitzgerald; Julio Fernandez-Banet; Leo Gordon; Stefan Gräf; Syed Haider; Martin Hammond; Kerstin Howe; Andrew M. Jenkinson; Nathan Johnson; Andreas Kähäri; Damian Keefe; Stephen Keenan; Rhoda Kinsella; Felix Kokocinski; Gautier Koscielny; Eugene Kulesha; Daniel Lawson; Ian Longden; Tim Massingham; William M. McLaren

Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.


Nucleic Acids Research | 2013

Integrative annotation of chromatin elements from ENCODE data

Michael M. Hoffman; Jason Ernst; Steven P. Wilder; Anshul Kundaje; Robert S. Harris; Max Libbrecht; Belinda Giardine; Paul M. Ellenbogen; Jeff A. Bilmes; Ewan Birney; Ross C. Hardison; Ian Dunham; Manolis Kellis; William Stafford Noble

The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.


Cell | 2010

ATR-X Syndrome Protein Targets Tandem Repeats and Influences Allele-Specific Expression in a Size-Dependent Manner

Martin Law; Karen M. Lower; Hsiao P.J. Voon; Jim R. Hughes; David Garrick; Vip Viprakasit; Matthew Mitson; Marco Gobbi; Marco A. Marra; Andrew P. Morris; Aaron Abbott; Steven P. Wilder; Stephen Taylor; Guilherme M. Santos; Joe Cross; Helena Ayyub; Steven J.M. Jones; Jiannis Ragoussis; Daniela Rhodes; Ian Dunham; Douglas R. Higgs; Richard J. Gibbons

ATRX is an X-linked gene of the SWI/SNF family, mutations in which cause syndromal mental retardation and downregulation of α-globin expression. Here we show that ATRX binds to tandem repeat (TR) sequences in both telomeres and euchromatin. Genes associated with these TRs can be dysregulated when ATRX is mutated, and the change in expression is determined by the size of the TR, producing skewed allelic expression. This reveals the characteristics of the affected genes, explains the variable phenotypes seen with identical ATRX mutations, and illustrates a new mechanism underlying variable penetrance. Many of the TRs are G rich and predicted to form non-B DNA structures (including G-quadruplex) in vivo. We show that ATRX binds G-quadruplex structures in vitro, suggesting a mechanism by which ATRX may play a role in various nuclear processes and how this is perturbed when ATRX is mutated.


Nature Methods | 2014

Functional annotation of noncoding sequence variants

Graham R. S. Ritchie; Ian Dunham; Eleftheria Zeggini; Paul Flicek

Identifying functionally relevant variants against the background of ubiquitous genetic variation is a major challenge in human genetics. For variants in protein-coding regions, our understanding of the genetic code and splicing allows us to identify likely candidates, but interpreting variants outside genic regions is more difficult. Here we present genome-wide annotation of variants (GWAVA), a tool that supports prioritization of noncoding variants by integrating various genomic and epigenomic annotations.


Nature Genetics | 2013

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila; Bendik S. Winsvold; Padhraig Gormley; Tobias Kurth; Francesco Bettella; George McMahon; Mikko Kallela; Rainer Malik; Boukje de Vries; Gisela M. Terwindt; Sarah E. Medland; Unda Todt; Wendy L. McArdle; Lydia Quaye; Markku Koiranen; M. Arfan Ikram; Terho Lehtimäki; Anine H. Stam; Lannie Ligthart; Juho Wedenoja; Ian Dunham; Benjamin M. Neale; Priit Palta; Eija Hämäläinen; Markus Schuerks; Lynda M. Rose; Julie E. Buring; Paul M. Ridker; Stacy Steinberg; Hreinn Stefansson

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10−8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


Nature Genetics | 2008

Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians

Guillaume Smits; Andrew J. Mungall; Sam Griffiths-Jones; Paul Smith; Delphine Beury; Lucy Matthews; Jane Rogers; Andrew J. Pask; Geoff Shaw; John L. VandeBerg; John R. McCarrey; Marilyn B. Renfree; Wolf Reik; Ian Dunham

Comparisons between eutherians and marsupials suggest limited conservation of the molecular mechanisms that control genomic imprinting in mammals. We have studied the evolution of the imprinted IGF2-H19 locus in therians. Although marsupial orthologs of protein-coding exons were easily identified, the use of evolutionarily conserved regions and low-stringency Bl2seq comparisons was required to delineate a candidate H19 noncoding RNA sequence. The therian H19 orthologs show miR-675 and exon structure conservation, suggesting functional selection on both features. Transcription start site sequences and poly(A) signals are also conserved. As in eutherians, marsupial H19 is maternally expressed and paternal methylation upstream of the gene originates in the male germline, encompasses a CTCF insulator, and spreads somatically into the H19 gene. The conservation in all therians of the mechanism controlling imprinting of the IGF2-H19 locus suggests a sequential model of imprinting evolution.


Nature | 2000

An SNP map of human chromosome 22.

James C. Mullikin; Sarah Hunt; Charlotte G. Cole; Beverley Mortimore; Catherine M. Rice; J. Burton; L. H. Matthews; R. Pavitt; R. W. Plumb; Sarah Sims; R. M. R. Ainscough; J. Attwood; J. M. Bailey; K. Barlow; R. M. M. Bruskiewich; P. N. Butcher; Nigel P. Carter; Yuan Chen; C. M. Clee; Penny Coggill; J. Davies; Robert Davies; E. Dawson; M. D. Francis; A. A. Joy; R. G. Lamble; Cordelia Langford; J. Macarthy; V. Mall; A. Moreland

The human genome sequence will provide a reference for measuring DNA sequence variation in human populations. Sequence variants are responsible for the genetic component of individuality, including complex characteristics such as disease susceptibility and drug response. Most sequence variants are single nucleotide polymorphisms (SNPs), where two alternate bases occur at one position. Comparison of any two genomes reveals around 1 SNP per kilobase. A sufficiently dense map of SNPs would allow the detection of sequence variants responsible for particular characteristics on the basis that they are associated with a specific SNP allele. Here we have evaluated large-scale sequencing approaches to obtaining SNPs, and have constructed a map of 2,730 SNPs on human chromosome 22. Most of the SNPs are within 25 kilobases of a transcribed exon, and are valuable for association studies. We have scaled up the process, detecting over 65,000 SNPs in the genome as part of The SNP Consortium programme, which is on target to build a map of 1 SNP every 5 kilobases that is integrated with the human genome sequence and that is freely available in the public domain.


PLOS Biology | 2008

The Evolution of the DLK1-DIO3 Imprinted Domain in Mammals

Carol Ann Edwards; Andrew J. Mungall; Lucy Matthews; Edward Ryder; Dionne Gray; Andrew J. Pask; Geoffrey Shaw; Jennifer A. Marshall Graves; Jane Rogers; Ian Dunham; Marilyn B. Renfree; Anne C. Ferguson-Smith

A comprehensive, domain-wide comparative analysis of genomic imprinting between mammals that imprint and those that do not can provide valuable information about how and why imprinting evolved. The imprinting status, DNA methylation, and genomic landscape of the Dlk1-Dio3 cluster were determined in eutherian, metatherian, and prototherian mammals including tammar wallaby and platypus. Imprinting across the whole domain evolved after the divergence of eutherian from marsupial mammals and in eutherians is under strong purifying selection. The marsupial locus at 1.6 megabases, is double that of eutherians due to the accumulation of LINE repeats. Comparative sequence analysis of the domain in seven vertebrates determined evolutionary conserved regions common to particular sub-groups and to all vertebrates. The emergence of Dlk1-Dio3 imprinting in eutherians has occurred on the maternally inherited chromosome and is associated with region-specific resistance to expansion by repetitive elements and the local introduction of noncoding transcripts including microRNAs and C/D small nucleolar RNAs. A recent mammal-specific retrotransposition event led to the formation of a completely new gene only in the eutherian domain, which may have driven imprinting at the cluster.

Collaboration


Dive into the Ian Dunham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlotte G. Cole

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ewan Birney

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Christoph M. Koch

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Nigel P. Carter

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

David Beare

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc J. Smink

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge