Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian G. Cowell is active.

Publication


Featured researches published by Ian G. Cowell.


Cancer Research | 2006

Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441

Yan Zhao; Huw D. Thomas; Michael A. Batey; Ian G. Cowell; Caroline Richardson; Roger J. Griffin; A. Hilary Calvert; David R. Newell; Graeme Cameron Murray Smith; Nicola J. Curtin

DNA double-strand breaks (DSB) are the most cytotoxic lesions induced by ionizing radiation and topoisomerase II poisons, such as etoposide and doxorubicin. A major pathway for the repair of DSB is nonhomologous end joining, which requires DNA-dependent protein kinase (DNA-PK) activity. We investigated the therapeutic use of a potent, specific DNA-PK inhibitor (NU7441) in models of human cancer. We measured chemosensitization by NU7441 of topoisomerase II poisons and radiosensitization in cells deficient and proficient in DNA-PK(CS) (V3 and V3-YAC) and p53 wild type (LoVo) and p53 mutant (SW620) human colon cancer cell lines by clonogenic survival assay. Effects of NU7441 on DSB repair and cell cycle arrest were measured by gammaH2AX foci and flow cytometry. Tissue distribution of NU7441 and potentiation of etoposide activity were determined in mice bearing SW620 tumors. NU7441 increased the cytotoxicity of ionizing radiation and etoposide in SW620, LoVo, and V3-YAC cells but not in V3 cells, confirming that potentiation was due to DNA-PK inhibition. NU7441 substantially retarded the repair of ionizing radiation-induced and etoposide-induced DSB. NU7441 appreciably increased G(2)-M accumulation induced by ionizing radiation, etoposide, and doxorubicin in both SW620 and LoVo cells. In mice bearing SW620 xenografts, NU7441 concentrations in the tumor necessary for chemopotentiation in vitro were maintained for at least 4 hours at nontoxic doses. NU7441 increased etoposide-induced tumor growth delay 2-fold without exacerbating etoposide toxicity to unacceptable levels. In conclusion, NU7441 shows sufficient proof of principle through in vitro and in vivo chemosensitization and radiosensitization to justify further development of DNA-PK inhibitors for clinical use.


Chromosoma | 2002

Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals

Ian G. Cowell; Rebecca L. Aucott; Shantha K. Mahadevaiah; Paul S. Burgoyne; Neville S. Huskisson; Silvia Bongiorni; Giorgio Prantera; Laura Fanti; Sergio Pimpinelli; Rong Wu; David M. Gilbert; Wei Shi; Reinald Fundele; Harris Morrison; Peter Jeppesen; Prim B. Singh

Abstract. We show that methylated lysine 9 of histone H3 (Me9H3) is a marker of heterochromatin in divergent animal species. It localises to both constitutive and facultative heterochromatin and replicates late in S-phase of the cell cycle. Significantly, Me9H3 is enriched in the inactive mammalian X chromosome (Xi) in female cells, as well as in the XY body during meiosis in the male, and forms a G-band pattern along the arms of the autosomes. Me9H3 is a constituent of imprinted chromosomes that are repressed. The paternal and maternal pronuclei in one-cell mouse embryos show a striking non-equivalence in Me9H3: the paternal pronucleus contains no immunocytologically detectable Me9H3. The levels of Me9H3 on the parental chromosomes only become equivalent after the two-cell stage. Finally, we provide evidence that Me9H3 is neither necessary nor sufficient for localisation of heterochromatin protein 1 (HP1) to chromosomal DNA.


BioEssays | 2000

Mammalian chromodomain proteins: their role in genome organisation and expression

David O. Jones; Ian G. Cowell; Prim B. Singh

The chromodomain is a highly conserved sequence motif that has been identified in a variety of animal and plant species. In mammals, chromodomain proteins appear to be either structural components of large macromolecular chromatin complexes or proteins involved in remodelling chromatin structure. Recent work has suggested that apart from a role in regulating gene activity, chromodomain proteins may also play roles in genome organisation. This article reviews progress made in characterising mammalian chromodomain proteins and emphasises their emerging role in the regulation of gene expression and genome organisation. BioEssays 22:124-137, 2000.


PLOS ONE | 2007

γH2AX Foci Form Preferentially in Euchromatin after Ionising-Radiation

Ian G. Cowell; Nicola J. Sunter; Prim B. Singh; Caroline A. Austin; Barbara W. Durkacz; Michael J. Tilby

Background The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly phosphorylated following exposure of cells to double-strand break (DSB) inducing agents such as ionising radiation. Within minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand breaks (DSBs); these domains can be observed by immunofluorescence microscopy and are termed γH2AX foci. H2AX phosphorylation is believed to have a role mounting an efficient cellular response to DNA damage. Theoretical considerations suggest an essentially random chromosomal distribution of X-ray induced DSBs, and experimental evidence does not consistently indicate otherwise. However, we observed an apparently uneven distribution of γH2AX foci following X-irradiation with regions of the nucleus devoid of foci. Methodology/Principle Findings Using immunofluorescence microscopy, we show that focal phosphorylation of histone H2AX occurs preferentially in euchromatic regions of the genome following X-irradiation. H2AX phosphorylation has also been demonstrated previously to occur at stalled replication forks induced by UV radiation or exposure to agents such as hydroxyurea. In this study, treatment of S-phase cells with hydroxyurea lead to efficient H2AX phosphorylation in both euchromatin and heterochromatin at times when these chromatin compartments were undergoing replication. This suggests a block to H2AX phosphorylation in heterochromatin that is at least partially relieved by ongoing DNA replication. Conclusions/Significance We discus a number of possible mechanisms that could account for the observed pattern of H2AX phosphorylation. Since γH2AX is regarded as forming a platform for the recruitment or retention of other DNA repair and signaling molecules, these findings imply that the processing of DSBs in heterochromatin differs from that in euchromatic regions. The differential responses of heterochromatic and euchromatic compartments of the genome to DSBs will have implications for understanding the processes of DNA repair in relation to nuclear and chromatin organization.


Trends in Biochemical Sciences | 1994

Repression versus activation in the control of gene transcription

Ian G. Cowell

Studies on the regulation of transcription often focus on mechanisms of transcriptional activation. However, transcriptional repression is also an important factor in the regulation of many genes. Transcription of specific genes can be downregulated in various ways, and examination of a number of different systems has revealed that most or all steps required for transcriptional activation can be interfered with by transcriptional repressors.


Molecular and Cellular Biology | 2000

Conservation of Heterochromatin Protein 1 Function

Guozheng Wang; Alicia Ma; Cheok-man Chow; David Horsley; Nicholas R. Brown; Ian G. Cowell; Prim B. Singh

ABSTRACT Heterochromatin represents a cytologically visible state of heritable gene repression. In the yeast, Schizosaccharomyces pombe, the swi6 gene encodes a heterochromatin protein 1 (HP1)-like chromodomain protein that localizes to heterochromatin domains, including the centromeres, telomeres, and the donor mating-type loci, and is involved in silencing at these loci. We identify here the functional domains of swi6p and demonstrate that the chromodomain from a mammalian HP1-like protein, M31, can functionally replace that of swi6p, showing that chromodomain function is conserved from yeasts to humans. Site-directed mutagenesis, based on a modeled three-dimensional structure of the swi6p chromodomain, shows that the hydrophobic amino acids which lie in the core of the structure are critical for biological function. Gel filtration, gel overlay experiments, and mass spectroscopy show that HP1 proteins can self-associate, and we suggest that it is as oligomers that HP1 proteins are incorporated into heterochromatin complexes that silence gene activity.


The EMBO Journal | 2000

Dynamic associations of heterochromatin protein 1 with the nuclear envelope

Niki Kourmouli; Panayiotis A. Theodoropoulos; George K. Dialynas; Alexandra Bakou; Anastasia S. Politou; Ian G. Cowell; Prim B. Singh; Spyros D. Georgatos

To study the dynamics of mammalian HP1 proteins we have microinjected recombinant forms of mHP1α, M31 and M32 into the cytoplasm of living cells. As could be expected from previous studies, the three fusion proteins were efficiently transported into the nucleus and targeted specific chromatin areas. However, before incorporation into these areas the exogenous proteins accumulated in a peripheral zone and associated closely with the nuclear envelope. This transient association did not occur when the cells were treated with deacetylase inhibitors, indicating an acetylation‐inhibited interaction. In line with these observations, recombinant HP1 proteins exhibited saturable binding to purified nuclear envelopes and stained the nuclei of detergent‐permeabilized cells in a rim‐like fashion. Competition experiments with various M31 mutants allowed mapping of the nuclear envelope‐binding site within an N‐terminal region that includes the chromodomain. A His6‐tagged peptide representing this region inhibited recruitment of LAP2β and B‐type lamins around the surfaces of condensed chromosomes, suggesting involvement of HP1 proteins in nuclear envelope reassembly.


The Journal of Pathology | 2002

The Ki-67 protein interacts with members of the heterochromatin protein 1 (HP1) family: a potential role in the regulation of higher-order chromatin structure

Thomas Scholzen; Elmar Endl; Claudia Wohlenberg; Sjaak van der Sar; Ian G. Cowell; Johannes Gerdes; Prim B. Singh

The expression of the nuclear protein Ki‐67 (pKi‐67) is strictly correlated with cell proliferation. Because of this, anti‐Ki‐67 antibodies can be used as operational markers to estimate the growth fraction of human neoplasia in situ. For a variety of tumours, the assessment of pKi‐67 expression has repeatedly been proven to be of prognostic value for survival and tumour recurrence, but no cellular function has yet been ascribed to the Ki‐67 protein. This study shows that a C‐terminal domain of pKi‐67 (Kon21) is able to bind to all three members of the mammalian heterochromatin protein 1 (HP1) family in vitro and in vivo. This interaction can be manipulated in living cells, as evidenced by ectopic expression of GFP‐tagged HP1 proteins in HeLa cells, which results in a dramatic relocalization of endogenous pKi‐67. Taken together, the data presented in this study suggest a role for pKi‐67 in the control of higher‐order chromatin structure. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2012

Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity

Ian G. Cowell; Zbyslaw Sondka; Kayleigh Smith; Ka Cheong Lee; Catriona Manville; Malgorzata Sidorczuk-Lesthuruge; Holly Rance; Kay Padget; Graham Jackson; Noritaka Adachi; Caroline A. Austin

Topoisomerase poisons such as the epipodophyllotoxin etoposide are widely used effective cytotoxic anticancer agents. However, they are associated with the development of therapy-related acute myeloid leukemias (t-AMLs), which display characteristic balanced chromosome translocations, most often involving the mixed lineage leukemia (MLL) locus at 11q23. MLL translocation breakpoints in t-AMLs cluster in a DNase I hypersensitive region, which possesses cryptic promoter activity, implicating transcription as well as topoisomerase II activity in the translocation mechanism. We find that 2–3% of MLL alleles undergoing transcription do so in close proximity to one of its recurrent translocation partner genes, AF9 or AF4, consistent with their sharing transcription factories. We show that most etoposide-induced chromosome breaks in the MLL locus and the overall genotoxicity of etoposide are dependent on topoisomerase IIβ, but that topoisomerase IIα and -β occupancy and etoposide-induced DNA cleavage data suggest factors other than local topoisomerase II concentration determine specific clustering of MLL translocation breakpoints in t-AML. We propose a model where DNA double-strand breaks (DSBs) introduced by topoisomerase IIβ into pairs of genes undergoing transcription within a common transcription factory become stabilized by antitopoisomerase II drugs such as etoposide, providing the opportunity for illegitimate end joining and translocation.


Journal of Biological Chemistry | 2008

NK314, a topoisomerase II inhibitor that specifically targets the α isoform

Eriko Toyoda; Shigehide Kagaya; Ian G. Cowell; Aya Kurosawa; Keiichi Kamoshita; Kiyohiro Nishikawa; Susumu Iiizumi; Hideki Koyama; Caroline A. Austin; Noritaka Adachi

Topoisomerase II (Top2) is a ubiquitous nuclear enzyme that relieves torsional stress in chromosomal DNA during various cellular processes. Agents that target Top2, involving etoposide, doxorubicin, and mitoxantrone, are among the most effective anticancer drugs used in the clinic. Mammalian cells possess two genetically distinct Top2 isoforms, both of which are the target of these agents. Top2α is essential for cell proliferation and is highly expressed in vigorously growing cells, whereas Top2β is nonessential for growth and has recently been implicated in treatment-associated secondary malignancies, highlighting the validity of a Top2α-specific drug for future cancer treatment; however, no such agent has been hitherto reported. Here we show that NK314, a novel synthetic benzo[c]phenanthridine alkaloid, targets Top2α and not Top2β in vivo. Unlike other Top2 inhibitors, NK314 induces Top2-DNA complexes and double-strand breaks (DSBs) in an α isoform-specific manner. Heterozygous disruption of the human TOP2α gene confers increased NK314 resistance, whereas TOP2β homozygous knock-out cells display increased NK314 sensitivity, indicating that the α isoform is the cellular target. We further show that the absence of Top2β does not alleviate NK314 hypersensitivity of cells deficient in non-homologous end-joining, a critical pathway for repairing Top2-mediated DSBs. Our results indicate that NK314 acts as a Top2α-specific poison in mammalian cells, with excellent potential as an efficacious and safe chemotherapeutic agent. We also suggest that a series of human knock-out cell lines are useful in assessing DNA damage and repair induced by potential topoisomerase-targeting agents.

Collaboration


Dive into the Ian G. Cowell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally E. Pemble

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge