Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian G. Cowx is active.

Publication


Featured researches published by Ian G. Cowx.


BioScience | 2004

The Role of Recreational Fishing in Global Fish Crises

Steven J. Cooke; Ian G. Cowx

Abstract Exploitation of fishery resources has become a major conservation issue on a global scale. Commercial fisheries have been repeatedly blamed for the worldwide declines in fish populations. However, we contend that the recreational fishing sector also has the potential to negatively affect fish and fisheries. Here we present evidence to show that both recreational and commercial fishing sectors deserve consideration as contributors to the exploitation of fish in marine and inland waters. The lack of global monitoring and compiling of statistics on recreational fishing participation, harvest, and catch-and-release has retarded our ability to understand the magnitude of this fishing sector. Using data from Canada, we estimate that the potential contribution of recreational fish harvest around the world may represent approximately 12 percent of the global fish harvest. Failure to recognize the potential contribution of recreational fishing to fishery declines, environmental degradation, and ecosystem alterations places ecologically and economically important resources at risk. Elevating recreational fishing to a global conservation concern would facilitate the development of strategies to increase the sustainability of this activity.


Global Ecology and Biogeography | 2006

Patterns in species richness and endemism of European freshwater fish

Yorick Reyjol; Bernard Hugueny; Didier Pont; Pier Giorgio Bianco; Ulrika Beier; Nuno Caiola; Frederic Casals; Ian G. Cowx; Alcibiades Economou; Teresa Ferreira; Gertrud Haidvogl; Richard Noble; Adolfo de Sostoa; Thibault Vigneron; Tomas Virbickas

Aim To analyse the patterns in species richness and endemism of the native European riverine fish fauna, in the light of the Messinian salinity crisis and the Last Glacial Maximum (LGM). Location European continent. Methods After gathering native fish faunistic lists of 406 hydrographical networks, we defined large biogeographical regions with homogenous fish fauna, based on a hierarchical cluster analysis. Then we analysed and compared the patterns in species richness and endemism among these regions, as well as species–area relationships. Results Among the 233 native species present in the data set, the Cyprinidae family was strongly dominant (> 50% of the total number of species). Seven biogeographical regions were defined: Western Peri-Mediterranea, Central Peri-Mediterranea, Eastern Peri-Mediterranea, Ponto-Caspian Europe, Northern Europe, Central Europe and Western Europe. The highest regional species richness was observed for Central Peri-Mediterranea and Ponto-Caspian Europe. The highest endemic richness was found in Central Peri-Mediterranea. Species–area relationships were characterized by high slope values for Peri-Mediterranean Europe and low values for Central and Western Europe. Main conclusions The results were in agreement with the ‘Lago Mare’ hypothesis explaining the specificity of Peri-Mediterranean fish fauna, as well as with the history of recolonization of Central and Western Europe from Ponto-Caspian Europe following the LGM. The results also agreed with the mechanisms of speciation and extinction influencing fish diversity in hydrographical networks. We advise the use of the seven biogeographical regions for further studies, and suggest considering Peri-Mediterranean Europe and Ponto-Caspian Europe as ‘biodiversity hotspots’ for European riverine fish.


BioScience | 2003

Biodiversity and Fishery Sustainability in the Lake Victoria Basin: An Unexpected Marriage?

John Balirwa; Colin A. Chapman; Lauren J. Chapman; Ian G. Cowx; Kim Geheb; Les Kaufman; R. H. Lowe-McConnell; Ole Seehausen; Jan H. Wanink; Robin Welcomme; Frans Witte

Abstract Lake Victoria is Africas single most important source of inland fishery production. After it was initially fished down in the first half of the 20th century, Lake Victoria became home to a series of introduced food fishes, culminating in the eventual demographic dominance of the Nile perch, Lates niloticus. Simultaneously with the changes in fish stocks, Lake Victoria experienced dramatic changes in its ecology. The lake fishery during most of the 20th century was a multispecies fishery resting on a diverse lake ecosystem, in which native food fishes were targeted. The lake ended the century with a much more productive fishery, but one in which three species—two of them introduced—made up the majority of the catch. Although many fish stocks in Lake Victoria had declined before the expansion of the Nile perch population, a dramatic increase in the population size of Nile perch in the 1980s roughly coincided with the drastic decline or disappearance of many indigenous species. Now, two decades after the rise of Nile perch in Lake Victoria, this species has shown signs of being overfished, and some of the native species that were in retreat—or even thought extinct—are now reemerging. Data on the resurgence of the indigenous species suggest that heavy fishing of Nile perch may enhance biodiversity; this has spawned renewed interest in management options that promote both fishery sustainability and biodiversity conservation.


AMBIO: A Journal of the Human Environment | 2010

Fish migration, dams, and loss of ecosystem services in the Mekong Basin.

Patrick Dugan; Chris Barlow; Angelo Antonio Agostinho; Eric Baran; Glenn F. Cada; Daqing Chen; Ian G. Cowx; John W. Ferguson; Tuantong Jutagate; Martin Mallen-Cooper; Gerd Marmulla; John M. Nestler; Miguel Petrere; Robin Welcomme

The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin’s fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.


Philosophical Transactions of the Royal Society B | 2010

Inland capture fisheries.

Robin Welcomme; Ian G. Cowx; David Coates; Christophe Béné; Simon Funge-Smith; Ashley Halls; K. Lorenzen

The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production.


Reviews in Fish Biology and Fisheries | 2012

The foraging ecology of larval and juvenile fishes

Andrew David Nunn; L. H. Tewson; Ian G. Cowx

Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes.


Regulated Rivers-research & Management | 1997

An evaluation of instream habitat restoration techniques on salmonid populations in a Newfoundland stream

Michael C. van Zyll De Jong; Ian G. Cowx; David A. Scruton

The effect of three types of habitat improvement structures were evaluated in Joe Farrells Brook, a small second order salmonid stream in Newfoundland, Canada which had been adversly affected by forest harvesting activities. Fish populations and key habitat attributes were monitored prior to and, in two subsequent years after, boulder clusters, V-dams and half-log covers were placed at selected sites in channellised reaches. Boulder clusters proved to be the most effective structure, increasing densities of 0+, 1+, and 3+ juvenile Atlantic salmon (Salmo salar L.) after placement of instream devices. V-dams proved to be effective in increasing both the density of brook trout (Salvelinus fontinalis Mitchel) and Atlantic salmon through the creation of more diverse pool habitat. Half-log covers increased the number of juvenile salmon age 0+ through an increase in instream cover. These increases in salmonid abundance, however, were considered not to be solely attributed to an improvement in physical habitat. Other factors may influence or modify productivity of the stream reaches treated. For example, relative abundance, size distribution, biomass, and production are controlled by physical and chemical habitat variables and are modified through inter- and intra-specific competition. The general conclusion was that the restoration techniques increased habitat heterogenity and the degree of habitat complexity in channellised sections; therefore, reducing competition and increasing production.


Biology Letters | 2011

Ecosystem approach to inland fisheries: research needs and implementation strategies

T. Douglas Beard; Robert Arlinghaus; Steven J. Cooke; Peter B. McIntyre; Sena S. De Silva; Devin M. Bartley; Ian G. Cowx

Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2014

The changing role of ecohydrological science in guiding environmental flows

Mike Acreman; Ian Overton; Jackie King; Paul J. Wood; Ian G. Cowx; Michael J. Dunbar; Eloise Kendy; William J. Young

Abstract The term “environmental flows” is now widely used to reflect the hydrological regime required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on them. The definition suggests a central role for ecohydrological science to help determine a required flow regime for a target ecosystem condition. Indeed, many countries have established laws and policies to implement environmental flows with the expectation that science can deliver the answers. This article provides an overview of recent developments and applications of environmental flows on six continents to explore the changing role of ecohydrological sciences, recognizing its limitations and the emerging needs of society, water resource managers and policy makers. Science has responded with new methods to link hydrology to ecosystem status, but these have also raised fundamental questions that go beyond ecohydrology, such as who decides on the target condition of the ecosystem? Some environmental flow methods are based on the natural flow paradigm, which assumes the desired regime is the natural “unmodified” condition. However, this may be unrealistic where flow regimes have been altered for many centuries and are likely to change with future climate change. Ecosystems are dynamic, so the adoption of environmental flows needs to have a similar dynamic basis. Furthermore, methodological developments have been made in two directions: first, broad-scale hydrological analysis of flow regimes (assuming ecological relevance of hydrograph components) and, second, analysis of ecological impacts of more than one stressor (e.g. flow, morphology, water quality). All methods retain a degree of uncertainty, which translates into risks, and raises questions regarding trust between scientists and the public. Communication between scientists, social scientists, practitioners, policy makers and the public is thus becoming as important as the quality of the science. Editor Z.W. Kundzewicz Citation Acreman, M.C., Overton, I.C., King, J., Wood, P., Cowx, I.G., Dunbar, M.J., Kendy, E., and Young, W., 2014. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59 (3–4), 433–450


Archive | 2000

Management and ecology of river fisheries

Ian G. Cowx

If you really want to be smarter, reading can be one of the lots ways to evoke and realize. Many people who like reading will have more knowledge and experiences. Reading can be a way to gain information from economics, politics, science, fiction, literature, religion, and many others. As one of the part of book categories, management and ecology of river fisheries always becomes the most wanted book. Many people are absolutely searching for this book. It means that many love to read this kind of book.

Collaboration


Dive into the Ian G. Cowx's collaboration.

Top Co-Authors

Avatar

Steven J. Cooke

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Douglas Beard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Acreman

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

Abigail J. Lynch

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge