Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian H Wilson is active.

Publication


Featured researches published by Ian H Wilson.


Archive | 2000

A 3 TeV

T. Raubenheimer; H Trautner; F Perriollat; Gilles Carron; Paul A. Pearce; J.C. Godot; Daniel Schulte; Philippe Royer; Steffen Döbert; Rudolf Bossart; A. Ferrari; G. Suberlucq; R. Assmann; Gunther Geschonke; L Groening; L. Thorndahl; Francesco Ruggiero; Louis Rinolfi; T. Kamitani; Olivier Napoly; F. Zhou; Erk Jensen; R. Corsini; Thys Risselada; Antonio Millich; H. Braun; J P Delahaye; Frederick F. Becker; Williame Coosemans; A Verdier

A possible design of a multi-TeV e+e- linear collider is presented. The design is based on the CLIC (Compact Linear Collider) two-beam technology proposed and developed at CERN. Though the study has shown that this technology is applicable to a linear collider with centre-of-mass energies from 500 GeV or less up to 5 TeV, the present report focuses on the nominal energy of 3 Te V. First, a short overview is given of the physics that could possibly be done with such a collider. Then, the description of the main-beam complex covers the injection system, the 30 GHz main linac, and the beam delivery system. The presentation of the RF power source includes the beam-generation scheme, the drive-beam decelerator, which consists of several 625 m long units running parallel to the main linac, and the power-extraction system. Finally, brief outlines are given of all the CLIC test facilities. They cover in particular the new CLIC test facility CTF3 which will demonstrate the feasibility of the power production technique, albeit on a reduced scale, and a first full-scale single-drive-beam unit, CLICI, to establish the overall feasibility of the scheme.


Archive | 1989

e^+ e^-

Alfred M Asner; Emilio Picasso; Yves Baconnier; N. Hilleret; J Schmid; Helmut Schonbacher; K Gobel; E. Weisse; Daniel Ch. Brandt; Alain Poncet; Dietrich Hagedorn; L Vos; H. Henke; R. Garoby; E Habel; Lyndon R Evans; M Bassetti; A. Fassò; Oscar Barbalat; Lorenzo Resegotti; R Calder; W. Scandale; R Wolf; Wolfgang Schnell; Daniel Boussard; Mario Morpurgo; Kjell Johnsen; Eberhard Keil; Manfred Hofert; Daniel Leroy

After the remarkable start-up of LEP, the installation of a Large Hadron Collider, LHC, in the LEP tunnel will open a new era for the High Energy Physics. This report summarizes the main LHC parameters and subsytems and describes the more recent studies and developments.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

Linear Collider Based on CLIC Technology

Jean-Pierre Delahaye; Gilbert Guignard; T. Raubenheimer; Ian H Wilson

Abstract Design studies of a future TeV e+e− Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake fields with frequency, the single-bunch emittance blow-up during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high-frequency structures becomes very advantageous because it enables high accelerating fields to be obtained, which reduces the overall length and consequently the total cost of the linac.


Proceedings of the 2005 Particle Accelerator Conference | 2005

The Large Hadron Collider (LHC) in the LEP tunnel

C. Achard; Hans-Heinrich Braun; G. Carron; R. Corsini; A. Grudiev; S. Heikkinen; D. Schulte; J. Sladen; I. Syratchev; F. Tecker; Ian H Wilson; Walter Wuensch

One of the major objectives of CTF3 (CLIC Test Facility) is the production of 30 GHz power for the high-gradient testing of CLIC accelerating structures. To this end a dedicated beam line, power generating structure and power transfer line have been designed, installed and commissioned. 52 MW of 30 GHz power with a pulse length of 74 ns and a repetition rate of 16 Hz were delivered to the high-gradient test area. This will allow operation of test accelerating structures in the first CTF3 run of 2005 up to the nominal CLIC accelerating gradient of 150 MV/m and beyond the nominal pulse length. The system is described and the performances of the CTF3 linac, beam line and the rf components are reviewed.


Archive | 2004

Scaling laws for e+/e− linear colliders

W. Wuensch; A. Grudiev; S. Heikkinen; I. Syratchev; M. Taborelli; Ian H Wilson; Steffen Döbert; C. Adolphsen

In order to achieve accelerating gradients above 150 MV/m, alternative materials to copper are being investigated by the CLIC study. The potential of refractory metals has already been demonstrated in tests in which a tungsten-iris and a molybdenum-iris structure reached 150 and 193 MV/m respectively (30 GHz and a pulse length of 15 ns). In order to extend the investigation to the pulse lengths required for a linear collider, a molybdenum-iris structure scaled to X-band was tested at the Next Linear Collider Test Accelerator (NLCTA). The structure conditioned to only 65 MV/m (100 ns pulse length) in the available testing time and much more slowly than is typical of a copper structure. However the structure showed no sign of saturation and a microscopic inspection of the rf surfaces corroborated that the structure was still at an early stage of conditioning. The X-band and 30 GHz results are compared and what has been learned about material quality, surface preparation and conditioning strategy is discussed.


High energy density microwaves | 1999

30 GHz Power Production in CTF3

H. Braun; R. Corsini; T. D’Amico; Jean-Pierre Delahaye; Gilbert Guignard; C. Johnson; Antonio Millich; P. Pearce; Louis Rinolfi; A. Riche; Daniel Schulte; L. Thorndahl; M. Valentini; Ian H Wilson; R. D. Ruth

In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency (∼1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over ...


Proceedings Particle Accelerator Conference | 1995

A High-Power Test of an X-Band Molybdenum-Iris Structure

H. Braun; R. Corsini; J P Delahaye; Gilbert Guignard; C. Johnson; J. H. B. Madsen; W. Schnell; L. Thorndahl; Ian H Wilson; Walter Wuensch; Bruno W Zotter

We discuss the RF system, the drive linac, drive beam generation, the isochronous ring drive beam scheme, the main linac injector system, machine parameters, beam dynamics and final focus studies and the alignment test facility and beam monitor test results.


Archive | 2002

A new method for RF power generation for two-beam linear colliders

A. Yeremian; R. Miller; R. Ruth; Gunther Geschonke; L. Groening; Louis Rinolfi; L. Thorndahl; Ian H Wilson; F. Zhou

The Two-Beam Accelerator concept is one of the most promising methods for producing RF power for future linear colliders. In particular it allows upgrades to multiTeV energies. One of its challenges is the production of the high current drive beam, which as it passes through decelerating structures, produces RF power for acceleration of the main beam. These challenges must be studied at a smaller scale test facility.


bipolar/bicmos circuits and technology meeting | 2003

CLIC-a compact and efficient high energy linear collider

J. Y. Raguin; Ian H Wilson; Walter Wuensch

Two of the main requirements for CLIC 30 GHz accelerating structures are an average accelerating gradient of 150 MV/m and features which suppress long-range transverse and longitudinal wakefields. The main effects that constrain the design of a copper structure are a surface electric field limit of about 300 MV/m, from evidence produced by the CLIC high-gradient testing program, and a pulsed surface heating temperature rise limit estimated to be of the order of 100 K. The interplay between maximum surface electric field, maximum surface magnetic field, transverse-wakefield suppression and RF-to-beam efficiency has been studied in detail. Several structures with a 110/spl deg/ phase advance and rather constant peak surface electric field distributions have been designed. Different damping-waveguide geometries and waveguide-to-cavity couplings are compared.


PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268) | 2001

CTF3 Drive-Beam Injector Design

M. Aleksa; R. Assmann; Williame Coosemans; Gilbert Guignard; N. Leros; M. Mayoud; Stefano Redaelli; F. Ruggiero; S. Russenschuck; Daniel Schulte; Ian H Wilson; F. Zimmermann

The present parameters of the CLIC study require the collision of small emittance beams with a vertical spot size of 1 nm. The tolerances on vertical quadrupole vibration (above a few Hz) are as small as a few nm in the linac and most of the Final Focus. The final focusing quadrupole has a stability requirement of 4 nm in the horizontal and 0.2 nm in the vertical direction. Those tolerances can only be achieved with the use of damped support structures for CLIC. A study has been set-up at CERN to explore the application of stabilization devices from specialized industry and to predict the time-dependent luminosity performance for CLIC. The results will guide the specification of required technological improvements and will help to verify the feasibility of the present CLIC parameters.

Researchain Logo
Decentralizing Knowledge