Ian J. Edwards
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian J. Edwards.
Brain Research | 2006
Carol J. Milligan; Ian J. Edwards; Jim Deuchars
Hyperpolarization-activated cyclic nucleotide-gated (HCN) non-selective cation channels in neurons carry currents proposed to perform diverse functions, including the hyperpolarization activated Ih current. The 4 HCN subunits have unique but overlapping patterns of expression in the CNS. Here, we examined the distribution of HCN1 channel subunits in the brainstem and spinal cord using immunohistochemistry. At all levels of the spinal cord dorsal horn, HCN1 immunoreactivity (HCN1-IR) was predominantly absent from laminae I and II, while a dense band of punctate labeling was visible in lamina III. Labeled neurons were identified in close vicinity to the central canal, in the lateral spinal nucleus, in the ventral horn and occasionally in lamina II and III. Those in the ventral horn were identified as alpha motor neurons using retrograde tracing and/or double or triple immunostaining with neuronal markers neurofilament 200 (NF200) and choline acetyltransferase. HCN1-IR neurons in the brainstem included neurons in sensory pathways such as the dorsal column nuclei, the area postrema, the spinal trigeminal nucleus as well as identified motor neurons in motor nuclei. In the nucleus ambiguus, a mixed visceral/motor nucleus, HCN1-IR was present only in NF200-IR cells, suggesting that it is expressed in motor but not autonomic preganglionic neurons. HCN1-IR motor neurons in the nucleus ambiguus also expressed the neurokinin 1 receptor and were labeled retrogradely from the larnyx. At the light microscopic level, the NTS and inferior olive contained punctate labeling, which ultrastructural examination revealed to be present in predominantly synaptic terminals or dendrites respectively. These data therefore described the first localization of the HCN1 subunit in the spinal cord and extend previous reports from the brainstem.
PLOS ONE | 2013
Greer S. Kirshenbaum; Neil Dawson; Jonathan G. L. Mullins; Tom H. Johnston; Mark J. Drinkhill; Ian J. Edwards; Susan H. Fox; Judith A. Pratt; Jonathan M. Brotchie; John C. Roder; Steven J. Clapcote
Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na+,K+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na+,K+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na+,K+-ATPase α3, including upon the K+ pore and predicted K+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na+,K+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.
The Journal of Neuroscience | 2013
Ian J. Edwards; Gareth Bruce; Charlotte Lawrenson; Laura Howe; Steven J. Clapcote; Susan A. Deuchars; Jim Deuchars
The Na+/K+ ATPase (NKA) is an essential membrane protein underlying the membrane potential in excitable cells. Transmembrane ion transport is performed by the catalytic α subunits (α1–4). The predominant subunits in neurons are α1 and α3, which have different affinities for Na+ and K+, impacting on transport kinetics. The exchange rate of Na+/K+ markedly influences the activity of the neurons expressing them. We have investigated the distribution and function of the main isoforms of the α subunit expressed in the mouse spinal cord. NKAα1 immunoreactivity (IR) displayed restricted labeling, mainly confined to large ventral horn neurons and ependymal cells. NKAα3 IR was more widespread in the spinal cord, again being observed in large ventral horn neurons, but also in smaller interneurons throughout the dorsal and ventral horns. Within the ventral horn, the α1 and α3 isoforms were mutually exclusive, with the α3 isoform in smaller neurons displaying markers of γ-motoneurons and α1 in α-motoneurons. The α3 isoform was also observed within muscle spindle afferent neurons in dorsal root ganglia with a higher proportion at cervical versus lumbar regions. We confirmed the differential expression of α subunits in motoneurons electrophysiologically in neonatal slices of mouse spinal cord. γ-Motoneurons were excited by bath application of low concentrations of ouabain that selectively inhibit NKAα3 while α-motoneurons were insensitive to these low concentrations. The selective expression of NKAα3 in γ-motoneurons and muscle spindle afferents, which may affect excitability of these neurons, has implications in motor control and disease states associated with NKAα3 dysfunction.
Brain Research | 2006
Ruth E. Brooke; Lucy Atkinson; Ian J. Edwards; Simon H. Parson; Jim Deuchars
Voltage gated K+ channels (Kv) are a diverse group of channels important in determining neuronal excitability. The Kv superfamily is divided into 12 subfamilies (Kv1-12) and members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique expression pattern. Since the localisation of Kv subunits is important in defining the roles they play in neuronal function, we have used immunohistochemistry to determine the distribution of the Kv3.3 subunit in the medulla oblongata and spinal cord of rats. Kv3.3 subunit immunoreactivity (Kv3.3-IR) was widespread but present only in specific cell populations where it could be detected in somata, dendrites and synaptic terminals. Labelled neurones were observed in the spinal cord in laminae IV and V, in the region of the central canal and in the ventral horn. In the medulla oblongata, labelled cell bodies were numerous in the spinal trigeminal, cuneate and gracilis nuclei whilst rarer in the lateral reticular nucleus, hypoglossal nucleus and raphe nucleus. Regions containing autonomic efferent neurones were predominantly devoid of labelling with only occasional labelled neurones being observed. Dual immunohistochemistry revealed that some Kv3.3-IR neurones in the ventral medullary reticular nucleus, spinal trigeminal nucleus, dorsal horn, ventral horn and central canal region were also immunoreactive for the Kv3.1b subunit. The presence of Kv3.3 subunits in terminals was confirmed by co-localisation of Kv3.3-IR with the synaptic vesicle protein SV2, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. Co-localisation of Kv3.3-IR was not observed with VGluT1, tyrosine hydroxylase, serotonin or choline acetyl transferase. Electron microscopy confirmed the presence of Kv3.3-IR in terminals and somatic membranes in ventral horn neurones, but not motoneurones. This study provides evidence supporting a role for Kv3.3 subunits in regulating neuronal excitability and in the modulation of excitatory and inhibitory synaptic transmission in the medulla oblongata and spinal cord.
The Journal of Neuroscience | 2007
Ian J. Edwards; Mark L. Dallas; Sarah L. Poole; Carol J. Milligan; Yuchio Yanagawa; Gábor Szabó; Ferenc Erdélyi; Susan A. Deuchars; Jim Deuchars
Sensory afferent signals from neck muscles have been postulated to influence central cardiorespiratory control as components of postural reflexes, but neuronal pathways for this action have not been identified. The intermedius nucleus of the medulla (InM) is a target of neck muscle spindle afferents and is ideally located to influence such reflexes but is poorly investigated. To aid identification of the nucleus, we initially produced three-dimensional reconstructions of the InM in both mouse and rat. Neurochemical analysis including transgenic reporter mice expressing green fluorescent protein in GABA-synthesizing neurons, immunohistochemistry, and in situ hybridization revealed that the InM is neurochemically diverse, containing GABAegric and glutamatergic neurons with some degree of colocalization with parvalbumin, neuronal nitric oxide synthase, and calretinin. Projections from the InM to the nucleus tractus solitarius (NTS) were studied electrophysiologically in rat brainstem slices. Electrical stimulation of the NTS resulted in antidromically activated action potentials within InM neurons. In addition, electrical stimulation of the InM resulted in EPSPs that were mediated by excitatory amino acids and IPSPs mediated solely by GABAA receptors or by GABAA and glycine receptors. Chemical stimulation of the InM resulted in (1) a depolarization of NTS neurons that were blocked by NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonoamide) or kynurenic acid and (2) a hyperpolarization of NTS neurons that were blocked by bicuculline. Thus, the InM contains neurochemically diverse neurons and sends both excitatory and inhibitory projections to the NTS. These data provide a novel pathway that may underlie possible reflex changes in autonomic variables after neck muscle spindle afferent activation.
Journal of Clinical Investigation | 2017
Xiaona Du; Han Hao; Yuehui Yang; Sha Huang; Caixue Wang; Sylvain Gigout; Rosmaliza Ramli; Xinmeng Li; Ewa Jaworska; Ian J. Edwards; Jim Deuchars; Yuchio Yanagawa; Jinlong Qi; Bingcai Guan; David B. Jaffe; Hailin Zhang; Nikita Gamper
The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention.
Brain Research | 2010
Ruth E. Brooke; Laura F. Corns; Ian J. Edwards; Jim Deuchars
Kv3 voltage-gated K(+) channels are important in shaping neuronal excitability and are abundant in the CNS, with each Kv3 gene exhibiting a unique expression pattern. Mice lacking the gene encoding for the Kv3.3 subunit exhibit motor deficits. Furthermore, mutations in this gene have been linked to the human disease spinocerebellar ataxia 13, associated with cerebellar and extra-cerebellar symptoms such as imbalance and nystagmus. Kv subunit localisation is important in defining their functional roles and thus, we investigated the distribution of Kv3.3-immunoreactivity in the vestibular nuclear complex of rats with particular focus on the medial vestibular nucleus (MVN). Kv3.3-immunoreactivity was widespread in the vestibular nuclei and was detected in somata, dendrites and synaptic terminals. Kv3.3-immunoreactivity was observed in distinct neuronal populations and dual labelling with the neuronal marker NeuN revealed 28.5+/-1.9% of NeuN labelled MVN neurones were Kv3.3-positive. Kv3.3-immunoreactivity co-localised presynaptically with the synaptic vesicle marker SV2, parvalbumin, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. VGluT1 terminals were scarce within the MVN (2.5+/-1.1 per 50 microm(2)) and co-localisation was not observed. However, 85.4+/-9.4% of VGluT1 terminals targeted and enclosed Kv3.3-immunoreactive somata. Presynaptic Kv3.3 co-localisation with the GABAergic marker GAD67 was also not observed. Cytoplasmic GlyT2 labelling was observed in a subset of Kv3.3-positive neurones. Electron microscopy confirmed a pre- and post-synaptic distribution of the Kv3.3 protein. This study provides evidence supporting a role for Kv3.3 subunits in vestibular processing by regulating neuronal excitability pre- and post-synaptically.
Autonomic Neuroscience: Basic and Clinical | 2015
Jittima Gotts; Lucy Atkinson; Ian J. Edwards; Yuchio Yanagawa; Susan A. Deuchars; Jim Deuchars
GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours.
Journal of Chemical Neuroanatomy | 2009
Ian J. Edwards; Susan A. Deuchars; Jim Deuchars
The intermedius nucleus of the medulla (InM) is a small perihypoglossal brainstem nucleus, which receives afferent information from the neck musculature and also descending inputs from the vestibular nuclei, the gustatory portion of the nucleus of the solitary tract (NTS) and cortical areas involved in movements of the tongue. The InM sends monosynaptic projections to both the NTS and the hypoglossal nucleus. It is likely that the InM acts to integrate information from the head and neck and relays this information on to the NTS where suitable autonomic responses can be generated, and also to the hypoglossal nucleus to influence movements of the tongue and upper airways. Central to the integratory role of the InM is its neurochemical diversity. Neurones within the InM utilise the amino acid transmitters glutamate, GABA and glycine. A proportion of these excitatory and inhibitory neurones also use nitric oxide as a neurotransmitter. Peptidergic transmitters have also been found within InM neurones, although as yet the extent of the pattern of co-localisation between peptidergic and amino acid transmitters in neurones has not been established. The calcium binding proteins calretinin and parvalbumin are found within the InM in partially overlapping populations. Parvalbumin and calretinin appear to have complementary distributions within the InM, with parvalbumin being predominantly found within GABAergic neurones and calretinin being predominantly found within glutamatergic neurones. Neurones in the InM receive inputs from glutamatergic sensory afferents. This glutamatergic transmission is conducted through both NMDA and AMPA ionotropic glutamate receptors. In summary the InM contains a mixed pool of neurones including glutamatergic and GABAergic in addition to peptidergic neurones. Neurones within the InM receive inputs from the upper cervical region, descending inputs from brain regions involved in tongue movements and those involved in the coordination of the autonomic nervous system. Outputs from the InM to the NTS and hypoglossal nucleus suggest a possible role in the coordination of tongue movements and autonomic responses to changes in posture.
Brain Structure & Function | 2015
Ian J. Edwards; Varinder K. Lall; Julian F. R. Paton; Yuchio Yanagawa; Gábor Szabó; Susan A. Deuchars; Jim Deuchars
Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours—the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.