Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian J. Stratford is active.

Publication


Featured researches published by Ian J. Stratford.


British Journal of Cancer | 2010

Guidelines for the welfare and use of animals in cancer research

Paul Workman; Eric O. Aboagye; Frances R. Balkwill; A Balmain; G Bruder; D.J. Chaplin; J A Double; Jeffrey I. Everitt; D A H Farningham; Martin J. Glennie; L R Kelland; V Robinson; Ian J. Stratford; Gillian M. Tozer; Sue Watson; Stephen R. Wedge; Suzanne A. Eccles; V Navaratnam; S Ryder

Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice.


Radiation Research | 1976

Electron-Affinic Sensitization VII. A Correlation between Structures, One-Electron Reduction Potentials, and Efficiencies of Nitroimidazoles as Hypoxic Cell Radiosensitizers

I. R. Flockhart; C. E. Smithen; Ian J. Stratford; Peter Wardman; M. E. Watts

Radiosensitization efficiencies for seven different 2-nitroimidazoles including Ro-07-0582 and its urinary metabolite, Ro-05-9963, and two 5-nitroimidazoles including metronidazole, have been determined in hypoxic Chinese Hamster cells, line V79-379A, X-irradiated in vitro. All the compounds were active hypoxic cell sensitizers with the enhancement ratios increasing with drug concentration. The 2-nitroimidazoles were all more efficient than the 5-nitroimidazoles. Overall, the efficiencies, defined as the concentration required to give a particular enhancement ratio, varied by a factor of about 200. Electron-affinities of the sensitizers were determined by pulse radiolysis as the one-electron reduction potentials and these correlate well with the sensitization efficiencies of the compounds. The correlation extends beyond the nitroimidazole series as is shown by data for p-nitroacetophenone, nifuroxime (a nitrofuran) and oxygen itself. The nitroimidazoles varied by a factor of 70 in their octanol/water part...


Molecular and Cellular Biology | 2004

Hypoxia-Mediated Down-Regulation of Bid and Bax in Tumors Occurs via Hypoxia-Inducible Factor 1-Dependent and -Independent Mechanisms and Contributes to Drug Resistance

Janine T. Erler; Christopher Cawthorne; Kaye J. Williams; Marianne Koritzinsky; Bradley G Wouters; Claire Wilson; Crispin J. Miller; Costas Demonacos; Ian J. Stratford; Caroline Dive

ABSTRACT Solid tumors with disorganized, insufficient blood supply contain hypoxic cells that are resistant to radiotherapy and chemotherapy. Drug resistance, an obstacle to curative treatment of solid tumors, can occur via suppression of apoptosis, a process controlled by pro- and antiapoptotic members of the Bcl-2 protein family. Oxygen deprivation of human colon cancer cells in vitro provoked decreased mRNA and protein levels of proapoptotic Bid and Bad. Hypoxia-inducible factor 1 (HIF-1) was dispensable for the down-regulation of Bad but required for that of Bid, consistent with the binding of HIF-1α to a hypoxia-responsive element (positions −8484 to −8475) in the bid promoter. Oxygen deprivation resulted in proteosome-independent decreased expression of Bax in vitro, consistent with a reduction in global translation efficiency. The physiological relevance of Bid and Bax down-regulation was confirmed in tumors in vivo. Oxygen deprivation resulted in decreased drug-induced apoptosis and clonogenic resistance to agents with different mechanisms of action. The contribution of Bid and/or Bax down-regulation to drug responsiveness was demonstrated by the relative resistance of normoxic cells that had no or reduced expression of Bid and/or Bax and by the finding that forced expression of Bid in hypoxic cells resulted in increased sensitivity to the topoisomerase II inhibitor etoposide.


Cancer Research | 2014

Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade

Simon J. Dovedi; Amy L. Adlard; Grazyna Lipowska-Bhalla; Conor McKenna; Sherrie Jones; Eleanor J. Cheadle; Ian J. Stratford; Edmund Poon; Michelle Morrow; Ross Stewart; Hazel Jones; Robert W. Wilkinson; Jamie Honeychurch; Tim Illidge

Radiotherapy is a major part in the treatment of most common cancers, but many patients experience local recurrence with metastatic disease. In evaluating response biomarkers, we found that low doses of fractionated radiotherapy led to PD-L1 upregulation on tumor cells in a variety of syngeneic mouse models of cancer. Notably, fractionated radiotherapy delivered in combination with αPD-1 or αPD-L1 mAbs generated efficacious CD8(+) T-cell responses that improved local tumor control, long-term survival, and protection against tumor rechallenge. These favorable outcomes were associated with induction of a tumor antigen-specific memory immune response. Mechanistic investigations showed that IFNγ produced by CD8(+) T cells was responsible for mediating PD-L1 upregulation on tumor cells after delivery of fractionated radiotherapy. Scheduling of anti-PD-L1 mAb was important for therapeutic outcome, with concomitant but not sequential administration with fractionated radiotherapy required to improve survival. Taken together, our results reveal the mechanistic basis for an adaptive response by tumor cells that mediates resistance to fractionated radiotherapy and its treatment failure. With attention to scheduling, combination immunoradiotherapy with radiotherapy and PD-1/PD-L1 signaling blockade may offer an immediate strategy for clinical evaluation to improve treatment outcomes.


International Journal of Cancer | 2003

GLUT‐1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: Relationship to pimonidazole binding

Rachel Airley; Juliette A Loncaster; James A. Raleigh; Adrian L. Harris; Susan E Davidson; Robert D. Hunter; Catharine M L West; Ian J. Stratford

The presence of hypoxia in tumours results in the overexpression of certain genes, which are controlled via the transcription factor HIF‐1. Hypoxic cells are known to be radioresistant and chemoresistant, thus, a reliable surrogate marker of hypoxia is desirable to ensure that treatment may be rationally applied. Recently, the HIF‐1‐regulated proteins Glut‐1 and CAIX were validated as intrinsic markers of hypoxia by comparison with pO2 measured using oxygen electrodes. We compare the expression of Glut‐1 and CAIX with the binding of the bioreductive drug hypoxia marker pimonidazole. Pimonidazole was administered to 42 patients with advanced carcinoma of the cervix, 16 hr before biopsy. Sections of single or multiple biopsies were then immunostained for Glut‐1 and CAIX, and the area of staining scored by eye, using a “field‐by‐field” semi‐quantitative averaging system. Using 1 biopsy only, Glut‐1 (r = 0.54, p = <0.001) correlated with the level of pimonidazole binding, and Glut‐1 and CAIX expression also correlated significantly (r = 0.40, p = <0.009). Thus, our study has shown that HIF‐1 regulated genes have potential for future use as predictors of the malignant changes mediated by hypoxia, and warrant further investigation as indicators of response to cancer therapy.


British Journal of Cancer | 2002

ZD1839 ('Iressa'), a specific oral epidermal growth factor receptor-tyrosine kinase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model.

Kaye J. Williams; Brian A. Telfer; Ian J. Stratford; Stephen R. Wedge

The effect of ZD1839 (‘Iressa’), a specific inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor, on the radiation response of human tumour cells (LoVo colorectal carcinoma) was evaluated in vitro and in vivo. ZD1839 (0.5 μM, incubated days 1–5) significantly increased the anti-proliferative effect of fractionated radiation treatment (2 Gy day−1, days 1–3) on LoVo cells grown in vitro (P=0.002). ZD1839 combined with either single or fractionated radiotherapy in mice bearing LoVo tumour xenografts, also produced a highly significant increase in tumour growth inhibition (P⩽0.001) when compared to treatment with either modality alone. The radio-potentiating effect of ZD1839 was more apparent when radiation was administered in a fractionated protocol. This phenomenon may be attributed to an anti proliferative effect of ZD1839 on tumour cell re-population between radiotherapy fractions. These data suggest radiotherapy with adjuvant ZD1839 could enhance treatment response. Clinical investigation of ZD1839 in combination with radiotherapy is therefore warranted.


Oncogene | 2007

HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells

Pamela Maxwell; Rebecca Gallagher; Angela Seaton; Catherine Wilson; Paula Scullin; Johanna Pettigrew; Ian J. Stratford; Kaye J. Williams; Patrick G. Johnston; David Waugh

Hypoxic cancer cells are resistant to treatment, leading to the selection of cells with a more malignant phenotype. The expression of interleukin-8 (IL-8) plays an important role in the tumorigenesis and metastasis of solid tumors including prostate cancer. Recently, we detected elevated expression of IL-8 and IL-8 receptors in human prostate cancer tissue. The objective of the current study was to determine whether hypoxia increases IL-8 and IL-8 receptor expression in prostate cancer cells and whether this contributes to a survival advantage in hypoxic cells. IL-8, CXCR1 and CXCR2 messenger RNA (mRNA) expression in PC3 cells was upregulated in response to hypoxia in a time-dependent manner. Elevated IL-8 secretion following hypoxia was detected by enzyme-linked immunosorbent assay, while immunoblotting confirmed elevated receptor expression. Attenuation of hypoxia-inducible factor (HIF-1) and nuclear factor-κB (NF-κB) transcriptional activity using small interfering RNA (siRNA), a HIF-1 dominant-negative and pharmacological inhibitors, abrogated hypoxia-induced transcription of CXCR1 and CXCR2 in PC3 cells. Furthermore, chromatin-IP analysis demonstrated binding of HIF-1 and NF-κB to CXCR1. Finally, inhibition of IL-8 signaling potentiated etoposide-induced cell death in hypoxic PC3 cells. These results suggest that IL-8 signaling confers a survival advantage to hypoxic prostate cancer cells, and therefore, strategies to inhibit IL-8 signaling may sensitize hypoxic tumor cells to conventional treatments.


Clinical Cancer Research | 2004

ZD6474, a Potent Inhibitor of Vascular Endothelial Growth Factor Signaling, Combined With Radiotherapy: Schedule-Dependent Enhancement of Antitumor Activity

Kaye J. Williams; Brian A. Telfer; Sandra R. Brave; Jane Kendrew; Lynsey Whittaker; Ian J. Stratford; Stephen R. Wedge

Purpose: Vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and acts as a radiation survival factor for endothelial cells. ZD6474 (N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine) is a potent VEGF receptor 2 (KDR) tyrosine kinase inhibitor (TKI) that has additional activity versus the epidermal growth factor receptor. This study was designed to determine the efficacy of combining ZD6474 and radiotherapy in vivo. Experimental Design: The Calu-6 (non–small-cell lung cancer) tumor model was selected because it was found to be unresponsive to treatment with a selective epidermal growth factor receptor TKI but responds significantly to treatment with selective VEGF receptor TKIs. Tumor-bearing mice received either vehicle or ZD6474 (50 mg/kg, by mouth, once daily) for the duration of the experiment, with or without radiotherapy (3 × 2 Gy, days 1–3). Two combination schedules were examined: (a) ZD6474 given before each dose of radiation (concurrent schedule); and (b) ZD6474 given 30 minutes after the last dose of radiotherapy (sequential schedule). Results: The growth delay induced using the concurrent schedule was greater than that induced by ZD6474 or radiation treatment alone (22 ± 1 versus 9 ± 1 and 17 ± 2 days, respectively; P = 0.03 versus radiation alone). When administered sequentially, the growth delay was markedly enhanced (36 ± 1 days; P < 0.001 versus radiation alone or the concurrent schedule). Intravenous administration of Hoechst 33342 showed a trend toward reduced tumor perfusion after ZD6474 treatment, and a pairwise comparison (versus control) was significant after three doses of ZD6474 (P = 0.05 by one-tailed t test). Thus, impaired reoxygenation between fractions in the concurrent protocol may be the causal basis for the schedule dependency of the radiopotentiation observed. Conclusions: ZD6474 may be a successful adjuvant to clinical radiotherapy, and scheduling of the treatments could be important to ensure optimal efficacy.


British Journal of Cancer | 1984

Radiation sensitization and chemopotentiation: RSU 1069, a compound more efficient than misonidazole in vitro and in vivo.

I. Ahmed; P. W. Sheldon; Ian J. Stratford

Electron affinity as measured by the one-electron reduction potential, E17, is the major factor influencing radiosensitizing efficiency in vitro. RSU 1069 has an electron affinity (E17 = -398 mV) similar to misonidazole, however, the ability of this compound to sensitize hypoxic cells is considerably greater than that of misonidazole, e.g. 0.2 mM RSU 1069 gives an enhancement ratio of 2.2 compared to 1.5 for the same concentration of misonidazole. Radiosensitization studies with the MT tumour in vivo also showed RSU 1069 to be a more efficient sensitizer than misonidazole. An administered dose of only 0.08 mg g-1 RSU 1069 yielded an enhancement of 1.8 to 1.9 using tumour cell survival and tumour cure as end-points. The ability of RSU 1069 to potentiate the cytotoxic action of melphalan towards the MT tumour was also examined. RSU 1069 (0.08 mg g-1) given to mice 1 h before melphalan resulted in an enhancement of 3.0. In contrast, previous studies had shown with a series of nitroimidazoles including misonidazole that Ro 03-8799 was the most effective potentiating agent, but this only gave an enhancement of 2.3 at a 10-fold higher dose than RSU 1069. RSU 1069 is a compound of substantial promise both as a radiosensitizer and chemopotentiating agent and warrants further investigation.


PLOS ONE | 2010

Site and Strain-Specific Variation in Gut Microbiota Profiles and Metabolism in Experimental Mice

Melissa K. Friswell; Helen G. Gika; Ian J. Stratford; Georgios Theodoridis; Brian A. Telfer; Ian D. Wilson; Andrew J. McBain

Background The gastrointestinal tract microbiota (GTM) of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables. Methodology/Principal Findings The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID) was profiled using eubacterial –specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57). Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie) embryos produced highly similar GTM profiles (c. 95% concordance) between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions. Conclusion/Significance Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions.

Collaboration


Dive into the Ian J. Stratford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Freeman

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen A. Nolan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Catharine M L West

Manchester Academic Health Science Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge