Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian J. Tickle is active.

Publication


Featured researches published by Ian J. Tickle.


Structure | 2011

A New Generation of Crystallographic Validation Tools for the Protein Data Bank

Randy J. Read; Paul D. Adams; W. Bryan Arendall; Axel T. Brunger; Paul Emsley; Robbie P. Joosten; Gerard J. Kleywegt; Eugene Krissinel; Thomas Lütteke; Zbyszek Otwinowski; Anastassis Perrakis; Jane S. Richardson; William Sheffler; Janet L. Smith; Ian J. Tickle; Gert Vriend; Peter H. Zwart

Summary This report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data. These developments highlighted the need for a new assessment of validation criteria. The Task Force recommends that a small set of validation data be presented in an easily understood format, relative to both the full PDB and the applicable resolution class, with greater detail available to interested users. Most importantly, we recommend that referees and editors judging the quality of structural experiments have access to a concise summary of well-established quality indicators.


Journal of Applied Crystallography | 2009

PDB_REDO: automated re-refinement of X-ray structure models in the PDB.

Robbie P. Joosten; Jean Salzemann; V. Bloch; Heinz Stockinger; A.-C. Berglund; C. Blanchet; E. Bongcam-Rudloff; C. Combet; A. Da Costa; G. Deleage; M. Diarena; R. Fabbretti; G. Fettahi; V. Flegel; A. Gisel; Vinod Kasam; T. Kervinen; Eija Korpelainen; K. Mattila; Marco Pagni; M. Reichstadt; V. Breton; Ian J. Tickle; Gert Vriend

The majority of previously deposited X-ray structures can be improved by applying current refinement methods.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Crystal Structure of Human Cdk4 in Complex with a D-Type Cyclin.

Philip J. Day; Anne Cleasby; Ian J. Tickle; Marc O'Reilly; Joe Coyle; Finn P. Holding; Rachel McMenamin; Jeff Yon; Rajiv Chopra; Christoph Lengauer; Harren Jhoti

The cyclin D1–cyclin-dependent kinase 4 (CDK4) complex is a key regulator of the transition through the G1 phase of the cell cycle. Among the cyclin/CDKs, CDK4 and cyclin D1 are the most frequently activated by somatic genetic alterations in multiple tumor types. Thus, aberrant regulation of the CDK4/cyclin D1 pathway plays an essential role in oncogenesis; hence, CDK4 is a genetically validated therapeutic target. Although X-ray crystallographic structures have been determined for various CDK/cyclin complexes, CDK4/cyclin D1 has remained highly refractory to structure determination. Here, we report the crystal structure of CDK4 in complex with cyclin D1 at a resolution of 2.3 Å. Although CDK4 is bound to cyclin D1 and has a phosphorylated T-loop, CDK4 is in an inactive conformation and the conformation of the heterodimer diverges from the previously known CDK/cyclin binary complexes, which suggests a unique mechanism for the process of CDK4 regulation and activation.


PLOS ONE | 2014

Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO

Anne Cleasby; Jeff Yon; Philip J. Day; Caroline Richardson; Ian J. Tickle; Pamela A. Williams; James F. Callahan; Robin Arthur Ellis Carr; Nestor O. Concha; Jeffrey K. Kerns; Hongwei Qi; Thomas D. Sweitzer; Paris Ward; Thomas G. Davies

The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.


Acta Crystallographica Section D-biological Crystallography | 2007

Structure of a Cbs-Domain Pair from the Regulatory Gamma1 Subunit of Human Ampk in Complex with AMP and Zmp.

Philip J. Day; Andrew Sharff; Lina Parra; Anne Cleasby; Mark A. Williams; Stefan Hörer; Herbert Nar; Norbert Redemann; Ian J. Tickle; Jeff Yon

AMP-activated kinase (AMPK) is central to sensing energy status in eukaryotic cells via binding of AMP and ATP to CBS (cystathionine beta-synthase) domains in the regulatory gamma subunit. The structure of a CBS-domain pair from human AMPK gamma1 in complex with the physiological activator AMP and the pharmacological activator ZMP (AICAR) is presented.


ChemMedChem | 2006

Automated Protein–Ligand Crystallography for Structure‐Based Drug Design

Wijnand T. M. Mooij; Michael J. Hartshorn; Ian J. Tickle; Andrew Sharff; Marcel L. Verdonk; Harren Jhoti

An approach to automate protein–ligand crystallography is presented, with the aim of increasing the number of structures available to structure‐based drug design. The methods we propose deal with the automatic interpretation of diffraction data for targets with known protein structures, and provide easy access to the results. Central to the system is a novel procedure that fully automates the placement of ligands into electron density maps. Automation provides an objective way to structure solution, whereas manual placement can be rather subjective, especially for data of low to medium resolution. Ligands are placed by docking into electron density, whilst taking care of protein–ligand interactions. The ligand fitting procedure has been validated on both public domain and in‐house examples. Some of the latter deal with cocktails of low‐molecular weight compounds, as used in fragment‐based drug discovery by crystallography. For such library‐screening experiments we show that the method can automatically identify which of the compounds from a cocktail is bound.


Acta Crystallographica Section D-biological Crystallography | 2012

Statistical quality indicators for electron-density maps

Ian J. Tickle

A likelihood-based metric for scoring the local agreement of a structure model with the observed electron density is described.


Topics in Current Chemistry | 2011

Fragment Screening Using X-Ray Crystallography

Thomas G. Davies; Ian J. Tickle

The fragment-based approach is now well established as an important component of modern drug discovery. A key part in establishing its position as a viable technique has been the development of a range of biophysical methodologies with sufficient sensitivity to detect the binding of very weakly binding molecules. X-ray crystallography was one of the first techniques demonstrated to be capable of detecting such weak binding, but historically its potential for screening was under-appreciated and impractical due to its relatively low throughput. In this chapter we discuss the various benefits associated with fragment-screening by X-ray crystallography, and describe the technical developments we have implemented to allow its routine use in drug discovery. We emphasize how this approach has allowed a much greater exploitation of crystallography than has traditionally been the case within the pharmaceutical industry, with the rapid and timely provision of structural information having maximum impact on project direction.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Detection of secondary binding sites in proteins using fragment screening

R.F Ludlow; Marcel L. Verdonk; H.K Saini; Ian J. Tickle; Harren Jhoti

Significance The regulation of proteins in biological systems is essential to their function and nature has evolved a diverse array of mechanisms by which to achieve such regulation. Indeed, the primary function of a protein may be regulated by interaction with endogenous ligands or other protein partners binding at secondary sites. In this study, we report that fragment screening using X-ray crystallography can identify such secondary sites that may have a biological function, which in turn implies that the opportunities for modulating protein function with small molecules via such sites are far more widespread than previously assumed. Many of the secondary sites we discovered were previously unknown and therefore offer potential for novel approaches to modulate these protein targets. Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.


Acta Crystallographica Section D-biological Crystallography | 2007

Experimental determination of optimal root-mean- square deviations of macromolecular bond lengths and angles from their restrained ideal values

Ian J. Tickle

A number of inconsistencies are apparent in the recent research paper by Jaskolski et al. [(2007), Acta Cryst. D63, 611-620] concerning their recommendations for the values of the magnitude and resolution-dependence of the root-mean-square deviations (RMSDs) of bond lengths and angles from their restrained ideal values in macromolecular refinement, as well as their suggestions for the use of variable standard uncertainties dependent on atomic displacement parameters (ADPs) and occupancies. Whilst many of the comments and suggestions in the paper regarding updates for the ideal geometry values proposed by Engh and Huber are entirely reasonable and supported by the experimental evidence, the recommendations concerning the optimal values of RMSDs appear to be in conflict with previous experimental and theoretical work in this area [Tickle et al. (1998), Acta Cryst. D54, 243-252] and indeed appear to be based on a misunderstanding of the distinction between RMSD and standard uncertainty (SU). In contrast, it is proposed here that the optimal values of all desired weighting parameters, in particular the weighting parameters for the ADP differences and for the diffraction terms, be estimated by the purely objective procedure of maximizing the experiment-based log(free likelihood). In principle, this allows all weighting parameters that are not known accurately a priori to be scaled globally, relative to those that are known accurately, for an optimal refinement. The RMS Z score (RMSZ) is recommended as a more satisfactory statistic than the RMSD to assess the extent to which the geometry deviates from the ideal values and a theoretical rationale for the results obtained is presented in which the optimal RMSZ is identified as the calculated versus true Z-score correlation coefficient, the latter being a monotonic function of the resolution cutoff of the data. Regarding the proposal to use variable standard uncertainties, it is suggested that any departure from the current practice of using fixed weights for geometric restraints based on experimental values of standard uncertainties be subject to the same experiment-based validation.

Collaboration


Dive into the Ian J. Tickle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clemens Vonrhein

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge