Ian Jepson
Syngenta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian Jepson.
Plant Molecular Biology | 1994
James C. RegisterIII; David J. Peterson; Philip J. Bell; W. Paul Bullock; Ian Jeffrey Evans; Bronwyn Frame; Andrew James Greenland; Nicole S. Higgs; Ian Jepson; Shuping Jiao; Carol Lewnau; Jeff M. Sillick; H. Martin Wilson
Zea mays transformants produced by particle bombardment of embryogenic suspension culture cells of the genotype A188 × B73 and selected on kanamycin or bialaphos were characterized with respect to transgene integration, expression, and inheritance. Selection on bialaphos, mediated by thebar orpat genes, was more efficient than selection on kanamycin, mediated by thenptII gene. Most transformants contained multicopy, single locus, transgene insertion events. A transgene expression cassette was more likely to be rearranged if expression of that gene was not selected for during callus growth. Not all plants regenerated from calli representing single transformation events expressed the transgenes, and a non-selectable gene (uidA) was expressed in fewer plants than was the selectable transgene. Mendelian inheritance of transgenes consistent with transgene insertion at a single locus was observed for approximately two thirds of the transformants assessed. Transgene expression was typically, but not always, predictable in progeny plants-transgene silencing, as well as poor transgene transmission to progeny, was observed in some plant lines in which the parent plants had expressed the transgene.
Plant Molecular Biology | 1994
Ian Jepson; Venetia J. Lay; David Charles Holt; Simon William Jonathan Bright; Andrew James Greenland
Several GSTs have been characterised in maize. GST I is a homodimer of 29 kDa subunits, GST II a hetrodimer of 27 kDa and 29 kDa subunits and GST IV a homodimer of 27 kDa subunits. We report the isolation and characterization of a herbicide-safener inducible cDNA clone, GST-27. Based on partial amino acid sequence, GST-27 encodes the 27 kDa subunit present in both glutathione S-transferase isoforms GST II and IV. Northern blotting was used to compare the expression patterns of GST-27 with that of GST-29. Transcripts corresponding to GST-27 were found to be constitutively expressed in RNA isolated from the root, but no expression was detected in RNA isolated from aerial parts of the plant. The application of herbicide safener caused a dramatic increase in the expression of GST-27 in all aerial plant parts tested. GST-29 was found to be constitutively expressed in RNA isolated from a number of maize tissues. The basal level of GST-29 expression showed a minimal increase upon herbicide safener treatment. Although a range of hormonal, environmental and physiological stimuli failed to elevate GST-27 levels, some increase in GST-27 mRNA was observed in the late stages of leaf senescence and after treatments resulting in phytotoxic effects.
Molecular Genetics and Genomics | 1999
Alberto Martinez; Caroline A. Sparks; P. Drayton; John Thompson; Andrew James Greenland; Ian Jepson
Abstract Transformation with a chimeric receptor containing the glucocorticoid transactivation and DNA-binding domains fused to an ecdysteroid receptor ligand-binding domain permits ecdysone agonist-inducible gene expression in monocotyledonous plant cells. The inducible system is based on the specific activation of a chimeric receptor containing the ligand-binding domain of the Heliothis virescens ecdysteroid receptor and the inducer RH5992 (a 20-hydroxyecdysone agonist). RH5992 is an non-steroidal agrochemical with a high specificity for lepidopteran ecdysone receptors. Addition of RH5992 to transformed cells results in high levels of inducible expression in a ligand-specific manner, particularly when the effector receptor is coupled to the strong transactivator VP16. A chimeric construct containing the Drosophila ecdysone ligand-binding domain failed to activate reporter gene activity with RH5992, while activation was observed in the presence of muristeroneA. The system described provides the basis for an inducible gene expression system that is compatible with agricultural use.
Planta | 1995
David Charles Holt; Venetia J. Lay; Eric Daniel Clarke; Andrew John Dinsmore; Ian Jepson; Simon William Jonathan Bright; Andrew James Greenland
The safener-induced maize (Zea mays L.) glutathione S-transferase, GST II (EC 2.5.1.18) and another predominant isoform, GST I, were purified from extracts of maize roots treated with the safeners R-25788 (N,N-diallyl-2-dichloroacetamide) or R-29148 (3-dichloroace-tyl-2,2,5-trimethyl-1,3-oxazolidone). The isoforms GST I and GST II are respectively a homodimer of 29-kDa (GST-29) subunits and a heterodimer of 29 and 27-kDa (GST-27) subunits, while GST I is twice as active with 1-chloro-2,4-dinitrobenzene as GST II, GST II is about seven times more active against the herbicide, alachlor. Western blotting using antisera raised against GST-29 and GST-27 showed that GST-29 is present throughout the maize plant prior to safener treatment. In contrast, GST-27 is only present in roots of untreated plants but is induced in all the major aerial organs of maize after root-drenching with safener. The amino-acid sequences of proteolytic fragments of GST-27 show that it is related to GST-29 and identical to the 27-kDa subunit of GST IV.
Plant Physiology | 2002
Justin P. Sweetman; Chengcai Chu; Nan Qu; Andrew James Greenland; Uwe Sonnewald; Ian Jepson
We have demonstrated that low concentrations of ethanol vapor efficiently induce the alc gene expression system in tobacco (Nicotiana tabacum cv Samsun NN), potato (Solanum tuberosum cv Solara), and oilseed rape (Brassica napus cv Westar). For many situations, this may be the preferred method of induction because it avoids direct application of comparatively high concentrations of an ethanol solution. Although induction was seen with less than 0.4 μm ethanol vapor, maximal induction of the chloramphenicol acetyl transferase gene was achieved after 48 h in leaves of tobacco plants enclosed with 4.5 μm ethanol vapor. In the absence of ethanol, there is no detectable gene expression. Treatment of potato tubers with ethanol vapor results in uniform β-glucoronidase (GUS) expression. Vapor treatment of a single oilseed rape leaf resulted in induction of GUS in the treated leaf only and 14C-ethanol labeling in tobacco confirmed that the inducer was not translocated. In contrast, enclosure of the roots, aerial parts, or whole plant with ethanol vapor resulted in induction of GUS activity in leaves and roots. The data reported here broaden the utility of the alc system for research and crop biotechnology.
FEBS Letters | 1997
Mark Skipsey; Christopher John Andrews; Jane Karen Townson; Ian Jepson; Robert Edwards
An RT‐PCR‐derived clone encoding a stress‐inducible glutathione transferase (GSTGm1) from soybean has been over‐expressed in E. coli. The enzyme was active as the dimer GSTGm1‐1 and showed GST and glutathione peroxidase activity toward diverse xenobiotics, including analogues of natural stress‐metabolites. The selective herbicides, fomesafen and acifluorfen, were conjugated more actively with homoglutathione (hGSH), the major thiol in soybean, than with glutathione (GSH). No thiol preference was shown with the related herbicide, fluorodifen, while GSH was preferred with metolachlor and most non‐herbicide substrates. Similar thiol‐dependent specificities were observed in GST preparations from plants of varying GSH/hGSH content.
Pesticide Science | 1998
Ian Jepson; Alberto Martinez; Justin P. Sweetman
Chemical-inducible expression systems, or ‘gene switches’, provide an opportunity for the temporal, spatial and quantitative control of genetically engineered traits. This review describes molecular and chemical aspects of several gene switches which have appeared in the literature and a novel unpublished system. Molecular components from plant, bacterial, fungal, insect and mammalian sources have all been utilised to develop gene switches. A brief description of the underlying principle of each approach and some detail of how they perform in transgenic plants is given. Although gene switch systems have utility for fundamental and applied research, particular reference is given to those systems with potential for application in agriculture.
Plant Molecular Biology Reporter | 1991
Ian Jepson; John Bray; Gareth I. Jenkins; Wolfgang Schuch; Keith J. Edwards
We describe a general method for the preparation of λZAP II cDNA libraries from very small amounts (<50 mg) of plant tissue. We have achieved this by combining an efficient method for RNA extraction with a modified PCR protocol for the synthesis and amplification of cDNA. Using this protocol we have found it possible to generate cDNA libraries containing more than 106 clones from as little as 1 μg of total RNA.
Pesticide Science | 1997
Christopher John Andrews; Mark Skipsey; Jane Karen Townson; Carol Morris; Ian Jepson; Robert Edwards
Using extracts from suspension-cultured cells of soybean (Glycine max cv. Mandarin) as a source of active enzymes, the activities of glutathione transferases (GSTs) catalysing the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and selective herbicides were determined to be in the order CDNB fomesafen > metolachlor = acifluorfen > chlorimuron-ethyl. GST activities showed a thiol dependence in a substrate-specific manner. Thus, GST activities toward acifluorfen and fomesafen were greater when homoglutathione (hGSH), the endogenously occurring thiol in soybean, was used as the co-substrate rather than glutathione (GSH). Compared with GSH, hGSH addition either reduced or had no effect on GST activities toward other substrates. In the absence of enzyme, the rates of hGSH conjugation with acifluorfen, chlorimuron-ethyl and fomesafen were negligible, suggesting that rapid hGSH conjugation in soybean must be catalysed by GSTs. GST activities were subsequently determined in 14-day-old plants of soybean and a number of annual grass and broadleaf weeds. GST activities of the plants were then related to observed sensitivities to post-emergence applications of the four herbicides. When enzyme activity was expressed on a mg -1 protein basis, all grass weeds and Abutilon theophrasti contained considerably higher GST activity toward CDNB than soybean. With fomesafen as the substrate, GST activities were determined to be in the order soybean Echinochloa crus-galli > Digitaria sanguinalis > Sorghum halepense = Setaria faberi with none of the broadleaf weeds showing any activity. This order related well to the observed selectivity of fomesafen, with the exception of A. theophrasti, which was partially tolerant to the herbicide. Using metolachlor as the substrate the order of the GST activities was soybean > A. theophrasti S. halepense > Amaranthus retroflexus > Ipomoea hederacea, with the remaining species showing no activity. GST activities toward metolachlor correlated well with the selectivity of the herbicide toward the broadleaf weeds but not toward the grass weeds. Acifluorfen and chlorimuron-ethyl were selectively active on these species, but GST activities toward these herbicides could not be detected in crude extracts from whole plants.
Insect Biochemistry and Molecular Biology | 1999
Alberto Martinez; David John Scanlon; Barbara Gross; Srini C. Perara; Subba Reddy Palli; Andrew James Greenland; John Windass; Olaf Pongs; Peter Broad; Ian Jepson
Ecdysteroids play an important role during insect development. We report here the isolation and characterisation of an Ecdysone receptor (EcR) homologue from Heliothis virescens (HvEcR) and present evidence supporting the HvEcR active role as an active component of the native insect receptor. Alignment of the deduced amino acid sequence of HvEcR with those of EcRs from other species confirmed its membership of this family and showed that it is closely related to the B1 isoform of Drosophila melanogaster. Northern blot analysis showed that two transcripts (6.0 and 6.5 kb) were recognised by a probe spanning the DNA and ligand binding domains of the HvEcR. Genomic Southern blots showed that the HvEcR is encoded by a single copy gene. Two lines of evidence towards the functional activity of the HvEcR are presented. In vitro transcribed and translated HvEcR showed specific binding to hsp27 and pall response elements in the presence of CfUSP. Stable expression of HvEcR in 293 cells induced reporter gene activity in the presence of muristeroneA in a dose dependant manner while dexamethasone failed to activate.