Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian K. Bartol is active.

Publication


Featured researches published by Ian K. Bartol.


The Journal of Experimental Biology | 2003

Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae).

Ian K. Bartol; Morteza Gharib; Daniel Weihs; Paul W. Webb; Jay R. Hove; Malcolm S. Gordon

SUMMARY The hydrodynamic bases for the stability of locomotory motions in fishes are poorly understood, even for those fishes, such as the rigid-bodied smooth trunkfish Lactophrys triqueter, that exhibit unusually small amplitude recoil movements during rectilinear swimming. We have studied the role played by the bony carapace of the smooth trunkfish in generating trimming forces that self-correct for instabilities. The flow patterns, forces and moments on and around anatomically exact, smooth trunkfish models positioned at both pitching and yawing angles of attack were investigated using three methods: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. Models positioned at various pitching angles of attack within a flow tunnel produced well-developed counter-rotating vortices along the ventro-lateral keels. The vortices developed first at the anterior edges of the ventro-lateral keels, grew posteriorly along the carapace, and reached maximum circulation at the posterior edge of the carapace. The vortical flow increased in strength as pitching angles of attack deviated from 0°, and was located above the keels at positive angles of attack and below them at negative angles of attack. Variation of yawing angles of attack resulted in prominent dorsal and ventral vortices developing at far-field locations of the carapace; far-field vortices intensified posteriorly and as angles of attack deviated from 0°. Pressure distribution results were consistent with the DPIV findings, with areas of low pressure correlating well with regions of attached, concentrated vorticity. Lift coefficients of boxfish models were similar to lift coefficients of delta wings, devices that also generate lift through vortex generation. Furthermore, nose-down and nose-up pitching moments about the center of mass were detected at positive and negative pitching angles of attack, respectively. The three complementary experimental approaches all indicate that the carapace of the smooth trunkfish effectively generates self-correcting forces for pitching and yawing motions — a characteristic that is advantageous for the highly variable velocity fields experienced by trunkfish in their complex aquatic environment. All important morphological features of the carapace contribute to producing the hydrodynamic stability of swimming trajectories in this species.


Integrative and Comparative Biology | 2008

Swimming dynamics and propulsive efficiency of squids throughout ontogeny

Ian K. Bartol; Paul S. Krueger; Joseph T. Thompson; William J. Stewart

Squids encounter vastly different flow regimes throughout ontogeny as they undergo critical morphological changes to their two locomotive systems: the fins and jet. Squid hatchlings (paralarvae) operate at low and intermediate Reynolds numbers (Re) and typically have rounded bodies, small fins, and relatively large funnel apertures, whereas juveniles and adults operate at higher Re and generally have more streamlined bodies, larger fins, and relatively small funnel apertures. These morphological changes and varying flow conditions affect swimming performance in squids. To determine how swimming dynamics and propulsive efficiency change throughout ontogeny, digital particle image velocimetry (DPIV) and kinematic data were collected from an ontogenetic range of long-finned squid Doryteuthis pealeii and brief squid Lolliguncula brevis swimming in a holding chamber or water tunnel (Re = 20-20 000). Jet and fin wake bulk properties were quantified, and propulsive efficiency was computed based on measurements of impulse and excess kinetic energy in the wakes. Paralarvae relied predominantly on a vertically directed, high frequency, low velocity jet as they bobbed up and down in the water column. Although some spherical vortex rings were observed, most paralarval jets consisted of an elongated vortical region of variable length with no clear pinch-off of a vortex ring from the trailing tail component. Compared with paralarvae, juvenile and adult squid exhibited a more diverse range of swimming strategies, involving greater overall locomotive fin reliance and multiple fin and jet wake modes with better defined vortex rings. Despite greater locomotive flexibility, jet propulsive efficiency of juveniles/adults was significantly lower than that of paralarvae, even when juvenile/adults employed their highest efficiency jet mode involving the production of periodic isolated vortex rings with each jet pulse. When the fins were considered together with the jet for several juvenile/adult swimming sequences, overall propulsive efficiency increased, suggesting that fin contributions are important and should not be overlooked in analyses of the swimming performance of squids. The fins produced significant thrust and consistently had higher propulsive efficiency than did the jet. One particularly important area of future study is the determination of coordinated jet/fin wake modes that have the greatest impact on propulsive efficiency. Although such research would be technically challenging, requiring new, powerful, 3D approaches, it is necessary for a more comprehensive assessment of propulsive efficiency of the squid dual-mode locomotive system.


The Journal of Experimental Biology | 2005

Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes

Ian K. Bartol; Morteza Gharib; Paul W. Webb; Daniel Weihs; Malcolm S. Gordon

SUMMARY Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms: they produce trimming self-correcting forces, which we measured directly using the force balance. These data together with previous work on smooth trunkfish indicate that body-induced vortical flows are a common mechanism that is probably significant for trim control in all species of tropical boxfishes.


The Journal of Experimental Biology | 2009

Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers

Ian K. Bartol; Paul S. Krueger; William J. Stewart; Joseph T. Thompson

SUMMARY Squid paralarvae (hatchlings) rely predominantly on a pulsed jet for locomotion, distinguishing them from the majority of aquatic locomotors at low/intermediate Reynolds numbers (Re), which employ oscillatory/undulatory modes of propulsion. Although squid paralarvae may delineate the lower size limit of biological jet propulsion, surprisingly little is known about the hydrodynamics and propulsive efficiency of paralarval jetting within the intermediate Re realm. To better understand paralarval jet dynamics, we used digital particle image velocimetry (DPIV) and high-speed video to measure bulk vortex properties (e.g. circulation, impulse, kinetic energy) and other jet features [e.g. average and peak jet velocity along the jet centerline (Uj and Ujmax, respectively), jet angle, jet length based on the vorticity and velocity extents (Lω and LV, respectively), jet diameter based on the distance between vorticity peaks (Dω), maximum funnel diameter (DF), average and maximum swimming speed (U and Umax, respectively)] in free-swimming Doryteuthis pealeii paralarvae (1.8 mm dorsal mantle length) (Resquid=25–90). Squid paralarvae spent the majority of their time station holding in the water column, relying predominantly on a frequent, high-volume, vertically directed jet. During station holding, paralarvae produced a range of jet structures from spherical vortex rings (Lω/Dω=2.1, LV/DF=13.6) to more elongated vortex ring structures with no distinguishable pinch-off (Lω/Dω=4.6, LV/DF=36.0). To swim faster, paralarvae increased pulse duration and Lω/Dω, leading to higher impulse but kept jet velocity relatively constant. Paralarvae produced jets with low slip, i.e. ratio of jet velocity to swimming velocity (Uj/U or Ujmax/Umax), and exhibited propulsive efficiency [ηpd=74.9±8.83% (±s.d.) for deconvolved data] comparable with oscillatory/undulatory swimmers. As slip decreased with speed, propulsive efficiency increased. The detection of high propulsive efficiency in paralarvae is significant because it contradicts many studies that predict low propulsive efficiency at intermediate Re for inertial forms of locomotion.


Integrative and Comparative Biology | 2002

Flow Patterns Around the Carapaces of Rigid-bodied, Multi-propulsor Boxfishes (Teleostei: Ostraciidae)

Ian K. Bartol; Malcolm S. Gordon; Morteza Gharib; Jay R. Hove; Paul W. Webb; Daniel Weihs

Abstract Boxfishes (Teleostei: Ostraciidae) are rigid-body, multi-propulsor swimmers that exhibit unusually small amplitude recoil movements during rectilinear locomotion. Mechanisms producing the smooth swimming trajectories of these fishes are unknown, however. Therefore, we have studied the roles the bony carapaces of these fishes play in generating this dynamic stability. Features of the carapaces of four morphologically distinct species of boxfishes were measured, and anatomically-exact stereolithographic models of the boxfishes were constructed. Flow patterns around each model were investigated using three methods: 1) digital particle image velocimetry (DPIV), 2) pressure distribution measurements, and 3) force balance measurements. Significant differences in both cross-sectional and longitudinal carapace morphology were detected among the four species. However, results from the three interrelated approaches indicate that flow patterns around the various carapaces are remarkably similar. DPIV results revealed that the keels of all boxfishes generate strong longitudinal vortices that vary in strength and position with angle of attack. In areas where attached, concentrated vorticity was detected using DPIV, low pressure also was detected at the carapace surface using pressure sensors. Predictions of the effects of both observed vortical flow patterns and pressure distributions on the carapace were consistent with actual forces and moments measured using the force balance. Most notably, the three complementary experimental approaches consistently indicate that the ventral keels of all boxfishes, and in some species the dorsal keels as well, effectively generate self-correcting forces for pitching motions—a characteristic that is advantageous for the highly variable velocity fields in which these fishes reside.


The Biological Bulletin | 2001

Role of Aerobic and Anaerobic Circular Mantle Muscle Fibers in Swimming Squid: Electromyography

Ian K. Bartol

Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0–6.8 cm dorsal mantle length, 10.9–18.3 g) swimming in a flume at speeds of 3–27 cm s−1. In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s−1, when EMG activity was sporadic. At speeds greater than 15 cm s−1, the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21–27 cm s−1, when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.


The Journal of Experimental Biology | 2010

Hydrodynamic fin function of brief squid, Lolliguncula brevis

William J. Stewart; Ian K. Bartol; Paul S. Krueger

SUMMARY Although the pulsed jet is often considered the foundation of a squids locomotive system, the lateral fins also probably play an important role in swimming, potentially providing thrust, lift and dynamic stability as needed. Fin morphology and movement vary greatly among squid species, but the locomotive role of the fins is not well understood. To begin to elucidate the locomotive role of the fins in squids, fin hydrodynamics were studied in the brief squid Lolliguncula brevis, a species that exhibits a wide range of fin movements depending on swimming speed. Individual squid were trained to swim in both the arms-first and tail-first orientations against currents in a water tunnel seeded with light-reflective particles. Particle-laden water around the fins was illuminated with lasers and videotaped so that flow dynamics around the fins could be analyzed using digital particle image velocimetry (DPIV). Time-averaged forces generated by the fin were quantified from vorticity fields of the fin wake. During the low swimming speeds considered in this study [<2.5 dorsal mantle lengths (DML) per second], L. brevis exhibited four unique fin wake patterns, each with distinctive vortical structures: (1) fin mode I, in which one vortex is shed with each downstroke, generally occurring at low speeds; (2) fin mode II, an undulatory mode in which a continuous linked chain of vortices is produced; (3) fin mode III, in which one vortex is shed with each downstroke and upstroke, and; (4) fin mode IV, in which a discontinuous chain of linked double vortex structures is produced. All modes were detected during tail-first swimming but only fin modes II and III were observed during arms-first swimming. The fins produced horizontal and vertical forces of varying degrees depending on stroke phase, swimming speed, and swimming orientation. During tail-first swimming, the fins functioned primarily as stabilizers at low speeds before shifting to propulsors as speed increased, all while generating net lift. During arms-first swimming, the fins primarily provided lift with thrust production playing a reduced role. These results demonstrate the lateral fins are an integral component of the complex locomotive system of L. brevis, producing lift and thrust forces through different locomotive modes.


Advances in Science and Technology | 2008

Vortex Rings in Bio-Inspired and Biological Jet Propulsion

Paul S. Krueger; Ali Moslemi; J. Tyler Nichols; Ian K. Bartol; William J. Stewart

Pulsed-jets are commonly used for aquatic propulsion, such as squid and jellyfish locomotion. The sudden ejection of a jet with each pulse engenders the formation of a vortex ring through the roll-up of the jet shear layer. If the pulse is too long, the vortex ring will stop forming and the remainder of the pulse is ejected as a trailing jet. Recent results from mechanical pulsedjets have demonstrated that vortex rings lead to thrust augmentation through the acceleration of additional ambient fluid. This benefit is most pronounced for short pulses without trailing jets. Simulating vehicle motion by introducing background co-flow surrounding the jet has shown that vortex ring formation can be interrupted, but only if the co-flow is sufficiently fast. Recent in situ measurements on squid have captured vortical flows similar to those observed in the laboratory, suggesting thrust augmentation may play a role in their swimming performance. Likewise, recent measurements with a mechanical self-propelled pulsed-jet vehicle (“robosquid”) have shown a cruise-speed advantage obtained by pulsing.


Bioinspiration & Biomimetics | 2008

Evidence of self-correcting spiral flows in swimming boxfishes

Ian K. Bartol; Malcolm S. Gordon; Paul W. Webb; Daniel Weihs; Morteza Gharib

The marine boxfishes have rigid keeled exteriors (carapaces) unlike most fishes, yet exhibit high stability, high maneuverability and relatively low drag given their large cross-sectional area. These characteristics lend themselves well to bioinspired design. Based on previous stereolithographic boxfish model experiments, it was determined that vortical flows develop around the carapace keels, producing self-correcting forces that facilitate swimming in smooth trajectories. To determine if similar self-correcting flows occur in live, actively swimming boxfishes, two species of boxfishes (Ostracion meleagris and Lactophrys triqueter) were induced to swim against currents in a water tunnel, while flows around the fishes were quantified using digital particle image velocimetry. Significant pitch events were rare and short lived in the fishes examined. When these events were observed, spiral flows around the keels qualitatively similar to those observed around models were always present, with greater vortex circulation occurring as pitch angles deviated from 0 degrees . Vortex circulation was higher in live fishes than models presumably because of pectoral fin interaction with the keel-induced flows. The ability of boxfishes to modify their underlying self-correcting system with powered fin control is important for achieving high levels of both stability and maneuverability. Although the challenges of performing stability and maneuverability research on fishes are significant, the results of this study together with future studies employing innovative new approaches promise to provide valuable inspiration for the designers of bioinspired aquatic vehicles.


The Journal of Experimental Biology | 2016

Volumetric Flow Imaging Reveals the Importance of Vortex Ring Formation in Squid Swimming Tail-First and Arms-First

Ian K. Bartol; Paul S. Krueger; Rachel A. Jastrebsky; Sheila Williams; Joseph T. Thompson

ABSTRACT Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0–10 dorsal mantle lengths (DML) s−1] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5–3.0 DML s−1). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s−1. For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (<2.0 DML s−1) to counteract negative buoyancy. Propulsive efficiency (η) increased with speed irrespective of swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. Summary: Multi-propulsor squids produce complex 3D vortex wake flows while swimming arms-first and tail-first, as revealed by 3D jet/fin force and propulsive efficiency measurements.

Collaboration


Dive into the Ian K. Bartol's collaboration.

Top Co-Authors

Avatar

Paul S. Krueger

Southern Methodist University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morteza Gharib

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Weihs

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carly A. York

Lenoir–Rhyne University

View shared research outputs
Top Co-Authors

Avatar

Jay R. Hove

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge