Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Larson is active.

Publication


Featured researches published by Ian Larson.


European Journal of Pharmaceutical Sciences | 2010

Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate.

Admire Dube; Joseph A. Nicolazzo; Ian Larson

Catechins found in green tea have received considerable attention due to their favourable biological properties which include cardioprotective, neuroprotective and anti-cancer effects. However, their therapeutic potential is limited by their low oral bioavailability, attributed to poor stability and intestinal absorption. We encapsulated (+)-catechin (C) and (-)-epigallocatechin gallate (EGCg) in chitosan nanoparticles (CS NP) as a means of enhancing their intestinal absorption. Using excised mouse jejunum in Ussing chambers, encapsulation significantly enhanced (p<0.05) intestinal absorption. The cumulative amounts transported after encapsulation were significantly higher (p<0.05), i.e. 302.1+/-46.1 vs 206.8+/-12.6ng/cm(2) and 102.7+/-12.4 vs 57.9+/-7.9ng/cm(2) for C and EGCg, respectively. The mechanism by which absorption was enhanced was not through an effect of CS NPs on intestinal paracellular or passive transcellular transport processes (as shown by transport of (14)C-mannitol and (3)H-propranolol) or an effect on efflux proteins (as shown by transport of (3)H-digoxin) but was likely due to stabilization of catechins after encapsulation (99.7+/-0.7 vs 94.9+/-3.8% and 56.9+/-3.0 vs 1.3+/-1.7% of the initial C and EGCg concentration remaining, respectively). This study demonstrates that encapsulation of catechins in CS NPs enhances their intestinal absorption and is a promising strategy for improving their bioavailability.


Pure and Applied Chemistry | 2005

Atomic force microscopy and direct surface force measurements (IUPAC Technical Report)

John Ralston; Ian Larson; Mark W. Rutland; Adam Feiler; Mieke Kleijn

The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a sharp tip attached to a sensitive cantilever spring. Undulations in the surface lead to deflection of the spring, which is monitored optically. Usually, a feedback loop is employed, which holds the spring deflection constant, and the corresponding movement of the piezoelectric positioner thus generates the image. From this it can be seen that the scanning AFM has all the attributes necessary for the determination of surface and adhesion forces; a sensitive spring to determine the force, a piezoelectric crystal to alter the separation of the tip and surface, which if sufficiently well-calibrated also allows the relative separation of the tip and surface to be calculated. One can routinely quantify both the net surface force (and its separation dependence) as the probe approaches the sample, and any adhesion (pull-off) force on retraction. Interactions in relevant or practical systems may be studied, and, in such cases, a distinct advantage of the AFM technique is that a particle of interest can be attached to the end of the cantilever and the interaction with a sample of choice can be studied, a method often referred to as colloid probe microscopy. The AFM, or, more correctly, the scanning probe microscope, can thus be used to measure surface and frictional forces, the two foci of this article. There have been a wealth of force and friction measurements performed between an AFM tip and a surface, and many of the calibration and analysis issues are identical to those necessary for colloid probe work. We emphasize that this article confines itself primarily to elements of colloid probe measurement using the AFM.


Pharmaceutical Research | 2004

Lactose surface modification by decantation: Are drug-fine lactose ratios the key to better dispersion of salmeterol xinafoate from lactose-interactive mixtures?

Nazrul Islam; Peter Stewart; Ian Larson; Patrick G. Hartley

AbstractPurpose. The role of fine lactose in the dispersion of salmeterol xina- foate (SX) from lactose mixtures was studied by modifying the fine lactose concentration on the surface of the lactose carriers using wet decantation. Methods. Fine lactose was removed from lactose carriers by wet decantation using ethanol saturated with lactose. Particle sizing was achieved by laser diffraction. Fine particle fractions (FPFs) were determined by Twin Stage Impinger using a 2.5% SX mixture, and SX was analyzed by a validated high-performance liquid chromatography method. Adhesion forces between probes of SX and silica and the lactose surfaces were determined by atomic force microscopy. Results. FPFs of SX were related to fine lactose concentration in the mixture for inhalation grade lactose samples. Reductions in FPF (2- tp 4-fold) of Aeroflo 95 and 65 were observed after removing fine lactose by wet decantation; FPFs reverted to original values after addition of micronized lactose to decanted mixtures. FPFs of SX of sieved and decanted fractions of Aeroflo carriers were significantly different (p < 0.001). The relationship between FPF and fine lactose concentration was linear. Decanted lactose demonstrated surface modification through increased SX-lactose adhesion forces; however, any surface modification other than removal of fine lactose only slightly influenced FPF. Conclusions. Fine lactose played a key and dominating role in controlling FPF. SX to fine lactose ratios influenced dispersion of SX with maximum dispersion occurring as the ratio approached unity.


Biomaterials | 2009

A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma

Hang T. Ta; Crispin R. Dass; Ian Larson; Peter F. M. Choong; David E. Dunstan

The current management of primary osteosarcoma (OS) and its secondary metastasis is limited by the lack of an efficient drug delivery system. Here we report an in situ gelling chitosan/dipotassium orthophosphate hydrogel system designed to directly deliver the frontline chemotherapeutic agent (Doxorubicin) in a sustained time period to tumor sites. A significant reduction of both primary and secondary OS in a clinically relevant orthotopic model was measured when doxorubicin was administered with the hydrogel. This hydrogel delivery system also reduced cardiac and dermal toxicity of Doxorubicin in mice. The results obtained from this study demonstrate the potential application of a biodegradable hydrogel technology as an anti-cancer drug delivery system for successful chemotherapy.


International Journal of Pharmaceutics | 2010

Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach

Qi Tony Zhou; Li Qu; Ian Larson; Peter Stewart; David A.V. Morton

The aim of this study was to investigate the effect of coating on the aerosolization of three model micronized powders. Three model powder materials (salbutamol sulphate, salmeterol xinafoate, triamcinolone acetonide) were chosen not only for their different chemical properties but also for their different physical properties such as shape and size distribution. Each powder was coated with 5% (w/w) magnesium stearate using two different dry mechanofusion approaches. After mechanofusion, both poured and tapped densities for all three model drug powders significantly increased. There were significant improvements in aerosolization behavior from an inhaler device for all model powders after mechanofusion. Such improvements in aerosolization were attributed to the reduction in agglomerate strength caused by decreasing powder intrinsic cohesion via surface modification. The work also indicated that the effect of the coating was dependant on the initial particle properties.


European Journal of Pharmaceutical Sciences | 2011

Chitosan nanoparticles enhance the plasma exposure of (-)-epigallocatechin gallate in mice through an enhancement in intestinal stability.

Admire Dube; Joseph A. Nicolazzo; Ian Larson

The green tea catechin (-)-epigallocatechin gallate (EGCG) has attracted significant research interest due to its beneficial therapeutic effects, which include anti-oxidant, neuro-protective and anti-cancer effects. However, the therapeutic potential of EGCG following oral consumption is limited by its poor absorption. To address this issue, EGCG has been encapsulated in chitosan-tripolyphosphate nanoparticles (CS NPs) and the oral absorption of EGCG evaluated in Swiss Outbred mice. Administration of the CS NPs enhanced the plasma exposure of total EGCG by a factor of 1.5 relative to an EGCG solution, with plasma AUC((0-5 h)) values of 116.4±4.1 and 179.3±10.8 nM.h (mean±s.d., n=3-5) for the EGCG solution and CS NPs, respectively. Associated with the increased plasma exposure of EGCG was an enhancement in concentrations of EGCG in the stomach and jejunum of mice following CS NP administration. A 2.3-fold increase in the apparent exposure of EGCG to the jejunum (AUC(j)) was observed following CS NP encapsulation, with AUC(j(0-5 h)) values of 5.3±1.1 and 12.3±1.5 μM.h (mean±s.d., n=3-5) for the EGCG solution and CS NPs, respectively. The enhanced exposure of EGCG to the jejunum was likely responsible for the increased plasma concentrations of EGCG. The findings from this study suggest that CS NPs may be a useful approach for enhancing oral delivery, and therapeutic application, of EGCG in a number of disease conditions.


European Journal of Pharmaceutical Sciences | 2010

Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders

Qi Tony Zhou; Brian Armstrong; Ian Larson; Peter Stewart; David A.V. Morton

The aim of this study was to investigate the influence of the intrinsic inter-particulate cohesion of model pharmaceutical powders on their aerosolization from a dry powder inhaler. Two cohesive poly-disperse lactose powders with median particle sizes of around 4 and 20 microm were examined. The results showed that after dry coating with magnesium stearate, their flowability, fluidization and de-agglomeration behaviours could be substantially improved, as indicated by powder rheometry, shear testing and laser diffraction aerosol testing. This was achieved by reducing their cohesiveness via surface modification. In contrast to some previous reports, this study demonstrated how powder aerosolization may be improved more significantly and consistently (for widely varying air flow rates) by substantially reducing their inter-particulate cohesive forces. This study contributes to the understanding of the relationship between intrinsic cohesive nature and bulk properties such as flowability, fluidization and de-agglomeration and its impact on their aerosolization, which is fundamental and critical in the optimal design of dry powder inhaler formulations. The intensive mechanical dry coating technique also demonstrated a promising potential to improve aerosolization efficiency of fine cohesive model powders.


Langmuir | 2008

Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior

Yao-Da Dong; Aurelia W. Dong; Ian Larson; Michael Rappolt; Heinz Amenitsch; Tracey Hanley; Ben J. Boyd

The lyotropic liquid-crystalline phase behavior of phytantriol is receiving increasing interest in the literature as a result of similarities with glyceryl monooleate, despite its very different molecular structure. Some differences in the phase-transition temperature for the bicontinuous cubic to reverse hexagonal phase have been reported in the literature. In this study, we have investigated the influence that the commercial source and hence the purity has on the lyotropic phase behavior of phytantriol. Suppression of the phase-transition temperatures (by up to 15 degrees C for the bicontinuous cubic to reverse hexagonal phase transition) is apparent with lower-purity phytantriol. In addition, the composition boundaries were also found to depend significantly on the source and purity of phytantriol, with the bicontinuous cubic phase + excess water boundary occurring at a water content above that reported previously (i.e., >5% higher). Both the temperature and compositional changes in phase boundaries have significant implications on the use of these materials and highlight the impact that subtle levels of impurities can play in the phase behavior of these types of materials.


Biomaterials | 2009

A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy

Hang T. Ta; Crispin R. Dass; Ian Larson; Peter F. M. Choong; David E. Dunstan

Osteosarcoma (OS) is the most common type of malignant bone cancer, and the sixth most common type of cancer in children and young adults. Currently, gene therapy is being evaluated as a novel method for OS treatment. Here we report on an in situ gelling chitosan-based hydrogel system that sustains the release of a potential anti-cancer gene (pigment epithelium-derived factor) to the tumor site. A significant reduction of the primary OS in a clinically relevant orthotopic model was measured. The combination of plasmid treatment and chemotherapy together with the use of this delivery system led to the highest suppression of tumor growth without side effects. The results obtained from this study demonstrate the potential application of a biodegradable hydrogel technology as an anti-cancer drug delivery system for successful chemo-gene therapy.


Journal of Pharmaceutical Sciences | 2011

Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approach

Qi (Tony) Zhou; John A. Denman; Thomas R. Gengenbach; Shyamal Das; Li Qu; Hailong Zhang; Ian Larson; Peter Stewart; David A.V. Morton

The aim of this study is to investigate the changes in physical and chemical surface properties of a fine lactose powder, which has been processed by a mechanical dry coating approach. A commercially available milled lactose monohydrate powder (median diameter around 20 μm) was dry coated with a pharmaceutical lubricant, magnesium stearate (MgSt). Substantial changes in bulk behavior have been shown previously and the purpose of the current work was to understand the relationship between these bulk changes and physico-chemical changes in the surface. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results demonstrated both qualitatively and quantitatively how the chemical properties of the lactose particle surfaces had been altered. The characterization results indicated that a high-level coverage of a thin coating layer of MgSt has been created through the coating. Inverse gas chromatography was used to probe the surface energetic changes, and at conditions of finite dilution, provided a new insight into surface energy changes. This work demonstrated that the modifications of the surface physical and chemical properties correlated with the reduction in powder cohesion and improvement in powder flow.

Collaboration


Dive into the Ian Larson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Young

Woolcock Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick G. Hartley

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge