Ian M. Fingerman
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian M. Fingerman.
Journal of Biological Chemistry | 2007
Xiaobing Shi; Ioulia Kachirskaia; Kay L. Walter; Jen Hao A. Kuo; Aimee Lake; Foteini Davrazou; Steve M. Chan; David G.E. Martin; Ian M. Fingerman; Scott D. Briggs; LeAnn Howe; Paul J. Utz; Tatiana G. Kutateladze; Alexey A. Lugovskoy; Mark T. Bedford; Or Gozani
The PHD finger motif is a signature chromatin-associated motif that is found throughout eukaryotic proteomes. Here we have determined the histone methyl-lysine binding activity of the PHD fingers present within the Saccharomyces cerevisiae proteome. We provide evidence on the genomic scale that PHD fingers constitute a general class of effector modules for histone H3 trimethylated at lysine 4 (H3K4me3) and histone H3 trimethylated at lysine 36 (H3K36me3). Structural modeling of PHD fingers demonstrates a conserved mechanism for recognizing the trimethyl moiety and provides insight into the molecular basis of affinity for the different methyl-histone ligands. Together, our study suggests that a common function for PHD fingers is to transduce methyl-lysine events and sheds light on how a single histone modification can be linked to multiple biological outcomes.
Journal of Proteome Research | 2009
Mariana D. Plazas-Mayorca; Barry M. Zee; Nicolas L. Young; Ian M. Fingerman; Gary LeRoy; Scott D. Briggs; Benjamin A. Garcia
Despite increasing applications of mass spectrometry (MS) to characterize post-translational modifications (PTMs) on histone proteins, most existing protocols are not properly suited to robustly measure them in a high-throughput quantitative manner. In this work, we expand on current protocols and describe improved methods for quantitative Bottom Up characterization of histones and their PTMs with comparable sensitivity but much higher throughput than standard MS approaches. This is accomplished by first bypassing off-line fractionation of histone proteins and working directly with total histones from a typical nuclei acid extraction. Next, using a chemical derivatization procedure that is combined with stable-isotope labeling in a two-step process, we can quantitatively compare samples using nanoLC-MS/MS. We show that our method can successfully detect 17 combined H2A/H2B variants and over 25 combined histone H3 and H4 PTMs in a single MS experiment. We test our method by quantifying differentially expressed histone PTMs from wild-type yeast and a methyltransferase knockout strain. This improved methodology establishes that time and sample consuming off-line HPLC or SDS-PAGE purification of individual histone variants prior to MS interrogation as commonly performed is not strictly required. Our protocol significantly streamlines the analysis of histone PTMs and will allow for studies of differentially expressed PTMs between multiple samples during biologically relevant processes in a rapid and quantitative fashion.
Development | 2006
Laurel Bender; Jinkyo Suh; Coleen R. Carroll; Youyi Fong; Ian M. Fingerman; Scott D. Briggs; Ru Cao; Yi Zhang; Valerie Reinke; Susan Strome
Germ cell development in C. elegans requires that the X chromosomes be globally silenced during mitosis and early meiosis. We previously found that the nuclear proteins MES-2, MES-3, MES-4 and MES-6 regulate the different chromatin states of autosomes versus X chromosomes and are required for germline viability. Strikingly, the SET-domain protein MES-4 is concentrated on autosomes and excluded from the X chromosomes. Here, we show that MES-4 has histone H3 methyltransferase (HMT) activity in vitro, and is required for histone H3K36 dimethylation in mitotic and early meiotic germline nuclei and early embryos. MES-4 appears unlinked to transcription elongation, thus distinguishing it from other known H3K36 HMTs. Based on microarray analysis, loss of MES-4 leads to derepression of X-linked genes in the germ line. We discuss how an autosomally associated HMT may participate in silencing genes on the X chromosome, in coordination with the direct silencing effects of the other MES proteins.
Genes & Development | 2009
Douglas P. Mersman; Hai-Ning Du; Ian M. Fingerman; Paul F. South; Scott D. Briggs
The identification of histone methyltransferases and demethylases has uncovered a dynamic methylation system needed to modulate appropriate levels of gene expression. Gene expression levels of various histone demethylases, such as the JARID1 family, show distinct patterns of embryonic and adult expression and respond to different environmental cues, suggesting that histone demethylase protein levels must be tightly regulated for proper development. In our study, we show that the protein level of the yeast histone H3 Lys 4 (H3 K4) demethylase Jhd2/Kdm5 is modulated through polyubiquitination by the E3 ubiquitin ligase Not4 and turnover by the proteasome. We determine that polyubiquitin-mediated degradation of Jhd2 controls in vivo H3 K4 trimethylation and gene expression levels. Finally, we show that human NOT4 can polyubiquitinate human JARID1C/SMCX, a homolog of Jhd2, suggesting that this is likely a conserved mechanism. We propose that Not4 is an E3 ubiquitin ligase that monitors and controls a precise amount of Jhd2 protein so that the proper balance between histone demethylase and histone methyltransferase activities occur in the cell, ensuring appropriate levels of H3 K4 trimethylation and gene expression.
Genes & Development | 2008
Hai-Ning Du; Ian M. Fingerman; Scott D. Briggs
Set2-mediated H3 K36 methylation is an important histone modification on chromatin during transcription elongation. Although Set2 associates with the phosphorylated C-terminal domain (CTD) of RNA polymerase II (RNAPII), the mechanism of Set2 binding to chromatin and subsequent exertion of its methyltransferase activity is relatively uncharacterized. We identified a critical lysine residue in histone H4 that is needed for interaction with Set2 and proper H3 K36 di- and trimethylation. We also determined that the N terminus of Set2 contains a histone H4 interaction motif that allows Set2 to bind histone H4 and nucleosomes. A Set2 mutant lacking the histone H4 interaction motif is able to bind to the phosphorylated CTD of RNAPII and associate with gene-specific loci but is defective for H3 K36 di- and trimethylation. In addition, this Set2 mutant shows increased H4 acetylation and resistance to 6-Azauracil. Overall, our study defines a new interaction between Set2 and histone H4 that mediates trans-histone regulation of H3 K36 methylation, which is needed for the preventative maintenance and integrity of the genome.
Journal of Biological Chemistry | 2010
Paul F. South; Ian M. Fingerman; Douglas P. Mersman; Hai-Ning Du; Scott D. Briggs
In Saccharomyces cerevisiae, lysine 4 on histone H3 (H3K4) is methylated by the Set1 complex (Set1C or COMPASS). Besides the catalytic Set1 subunit, several proteins that form the Set1C (Swd1, Swd2, Swd3, Spp1, Bre2, and Sdc1) are also needed to mediate proper H3K4 methylation. Until this study, it has been unclear how individual Set1C members interact and how this interaction may impact histone methylation and gene expression. In this study, Bre2 and Sdc1 are shown to directly interact, and it is shown that the association of this heteromeric complex is needed for proper H3K4 methylation and gene expression to occur. Interestingly, mutational and biochemical analysis identified the C terminus of Bre2 as a critical protein-protein interaction domain that binds to the Dpy-30 domain of Sdc1. Using the human homologs of Bre2 and Sdc1, ASH2L and DPY-30, respectively, we demonstrate that the C terminus of ASH2L also interacts with the Dpy-30 domain of DPY-30, suggesting that this protein-protein interaction is maintained from yeast to humans. Because of the functionally conserved nature of the C terminus of Bre2 and ASH2L, this region was named the SDI (Sdc1 Dpy-30 interaction) domain. Finally, we show that the SDI-Dpy-30 domain interaction is physiologically important for the function of Set1 in vivo, because specific disruption of this interaction prevents Bre2 and Sdc1 association with Set1, resulting in H3K4 methylation defects and decreases in gene expression. Overall, these and other mechanistic studies on how H3K4 methyltransferase complexes function will likely provide insights into how human MLL and SET1-like complexes or overexpression of ASH2L leads to oncogenesis.
Journal of Biological Chemistry | 2012
Douglas P. Mersman; Hai-Ning Du; Ian M. Fingerman; Paul F. South; Scott D. Briggs
Background: Histone methyltransferases are key regulators in cell growth and gene expression. Results: We identified a charge-based protein-protein interaction within a histone H3K4 methyltransferase complex that is critical for protein stability and histone methylation. Conclusion: Charge-based protein-protein interactions are conserved among histone methyltransferases and are required for their function. Significance: This study helps determine how histone methyltransferase complexes are assembled and how they function. Histone H3 lysine 4 (H3K4) methyltransferases are conserved from yeast to humans, assemble in multisubunit complexes, and are needed to regulate gene expression. The yeast H3K4 methyltransferase complex, Set1 complex or complex of proteins associated with Set1 (COMPASS), consists of Set1 and conserved Set1-associated proteins: Swd1, Swd2, Swd3, Spp1, Bre2, Sdc1, and Shg1. The removal of the WD40 domain-containing subunits Swd1 and Swd3 leads to a loss of Set1 protein and consequently a complete loss of H3K4 methylation. However, until now, how these WD40 domain-containing proteins interact with Set1 and contribute to the stability of Set1 and H3K4 methylation has not been determined. In this study, we identified small basic and acidic patches that mediate protein interactions between the C terminus of Swd1 and the nSET domain of Set1. Absence of either the basic or acidic patches of Set1 and Swd1, respectively, disrupts the interaction between Set1 and Swd1, diminishes Set1 protein levels, and abolishes H3K4 methylation. Moreover, these basic and acidic patches are also important for cell growth, telomere silencing, and gene expression. We also show that the basic and acidic patches of Set1 and Swd1 are conserved in their human counterparts SET1A/B and RBBP5, respectively, and are needed for the protein interaction between SET1A and RBBP5. Therefore, this charge-based interaction is likely important for maintaining the protein stability of the human SET1A/B methyltransferase complexes so that proper H3K4 methylation, cell growth, and gene expression can also occur in mammals.
Epigenetics | 2008
Ian M. Fingerman; Hai-Ning Du; Scott D. Briggs
Covalent post-translational modifications of histones have been demonstrated to participate in a wide array of cellular processes, including regulation of gene transcription, gene repression, DNA double strand break repair, and mitosis. Regulation of how these covalent modifications, and the implications of this regulation, are currently of great interest. It has been long known that the addition and/or removal of these chromatin modifications are catalyzed by various classes of chromatin modifying enzymes, such as histone acetyltransferases/deacetylases and histone methyltransferases/demethylases. More recently, it has been demonstrated that the addition or removal of these modifications can be dependant upon other existing modifications, both in cis, from within the same histone, or in trans, contributed from another histone. The first trans-histone regulatory event was observed in S. cerevisiae, and influenced histone lysine methylation. This review will give insight into and summarize newly identified trans-histone pathways as a regulatory mechanism for histone lysine methylation.
Cell | 2004
Ian M. Fingerman; Scott D. Briggs
Posttranslational modifications of histones have been strongly correlated with transcriptional regulation. In this issue of Cell, comprehensively examined the nature of arginine methyltransferases and histone modifications in p53-mediated transcription.
CSH Protocols | 2008
Ian M. Fingerman; Hai-Ning Du; Scott D. Briggs
INTRODUCTIONHistone methyltransferases catalyze the addition of one or more methyl groups to a specific lysine or arginine residue within histones. Currently, there is a great deal of interest in histone methyltransferases, because mutations and misregulation of the genes encoding these proteins have been linked to various cancers and other diseases. Many genes encoding putative histone methyltransferases have been identified in eukaryotes, but the proteins they encode have not been functionally characterized. This protocol describes an in vitro assay for histone methyltransferase activity that uses bacterial cell extracts in which expression of a methyltransferase of interest is induced. In many cases, purification of the enzyme is unnecessary, making this experiment ideal for pilot studies. Bacterial cell extract containing the methyltransferase of interest is incubated with S-adenosyl-L-[methyl-(3)H]-methionine and various histone substrates, many of which are commercially available. Incorporation of the methyl-(3)H can be measured easily by scintillation counting. The labeled substrate is visualized by SDS-polyacrylamide gel electrophoresis (PAGE) followed by fluorography. This allows the substrate specificity and activity of a histone methyltransferase of interest to be readily characterized.