Ian P. Howard
York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian P. Howard.
Perception | 1989
Ian P. Howard; Thomas Heckmann
In studies where it is reported that illusory self-rotation (circular vection) is induced more by peripheral displays than by central displays, eccentricity may have been confounded with perceived relative distance and area. Experiments are reported in which the direction and magnitude of vection induced by a central display in the presence of a surround display were measured. The displays varied in relative distance and area and were presented in isolation, with one moving and one stationary display, or with both moving in opposite directions. A more distant display had more influence over vection than a near display. A central display induced vection if seen in isolation or through a ‘window’ in a stationary surrounding display. Motion of a more distant central display weakened vection induced by a nearer surrounding display moving the other way. When the two displays had the same area their effects almost cancelled. A moving central display nearer than a textured stationary surround produced vection in the same direction as the moving stimulus. This phenomenon is termed ‘contrast-motion vection’ because it is probably due to illusory motion of the surround induced by motion of the centre. Unequivocal statements about the dominance of an eccentric display over a central display cannot be made without considering the relative distances and sizes of the displays and the motion contrast between them.
Perception | 1987
Masao Ohmi; Ian P. Howard; Jack P Landolt
It has previously been reported that illusory self-rotation (circular vection) is most effectively induced by the more distant of two moving displays. Experiments are reported in which the relative effectiveness of two superimposed displays in generating circular vection as a function of (i) the separation in depth between them, (ii) their perceived relative distances, and (iii) which display was in the plane of focus was investigated. Circular vection was governed by the motion of the display that was perceived to be the more distant, even when it was actually nearer. However, actual or perceived distance was found to be not the crucial factor in circular vection because even when the distance between the two displays was virtually zero, vection was controlled by the display perceived to be in the background. When the displays were well separated in depth, vection was not affected by whether the near or the far display was in the plane of focus, nor by which display was fixed or pursued by the eyes.
Experimental Brain Research | 1995
Laura Telford; Ian P. Howard; Masao Ohmi
Previous studies have generally considered heading perception to be a visual task. However, since judgments of heading direction are required only during self-motion, there are several other relevant senses which could provide supplementary and, in some cases, necessary information to make accurate and precise judgments of the direction of self-motion. We assessed the contributions of several of these senses using tasks chosen to reflect the reference system used by each sensory modality. Head-pointing and rod-pointing tasks were performed in which subjects aligned either the head or an unseen pointer with the direction of motion during whole body linear motion. Passive visual and vestibular stimulation was generated by accelerating subjects at sub- or supravestibular thresholds down a linear track. The motor-kinesthetic system was stimulated by having subjects actively walk along the track. A helmet-mounted optical system, fixed either on the cart used to provide passive visual or vestibular information or on the walker used in the active walking conditions, provided a stereoscopic display of an optical flow field. Subjects could be positioned at any orientation relative to the heading, and heading judgments were obtained using unimodal visual, vestibular, or walking cues, or combined visual-vestibular and visual-walking cues. Vision alone resulted in reasonably precise and accurate head-pointing judgments (0.3° constant errors, 2.9° variable errors), but not rod-pointing judgments (3.5° constant errors, 5.9° variable errors). Concordant visual-walking stimulation slightly decreased the variable errors and reduced constant pointing errors to close to zero, while head-pointing errors were unaffected. Concordant visual-vestibular stimulation did not facilitate either response. Stimulation of the vestibular system in the absence of vision produced imprecise rod-pointing responses, while variable and constant pointing errors in the active walking condition were comparable to those obtained in the visual condition. During active self-motion, subjects made large headpointing undershoots when visual information was not available. These results suggest that while vision provides sufficient information to identify the heading direction, it cannot, in isolation, be used to guide the motor response required to point toward or move in the direction of self-motion.
Perception | 1994
Ian P. Howard; Antonie Howard
Inspection of a visual scene rotating about the vertical body axis induces a compelling sense of self rotation, or circular vection. Circular vection is suppressed by stationary objects seen beyond the moving display but not by stationary objects in the foreground. We hypothesised that stationary objects in the foreground facilitate vection because they introduce a relative-motion signal into what would otherwise be an absolute-motion signal. Vection latency and magnitude were measured with a full-field moving display and with stationary objects of various sizes and at various positions in the visual field. The results confirmed the hypothesis. Vection latency was longer when there were no stationary objects in view than when stationary objects were in view. The effect of stationary objects was particularly evident at low stimulus velocities. At low velocities a small stationary point significantly increased vection magnitude in spite of the fact that, at higher stimulus velocities and with other stationary objects in view, fixation on a stationary point, if anything, reduced vection. Changing the position of the stationary objects in the field of view did not affect vection latencies or magnitudes.
Vision Research | 1994
Ian P. Howard; Hirohiko Kaneko
A dichoptic display in which the images are cyclorotated in opposite directions does not appear inclined. This suggests that perceived inclination depends on the difference between horizontal-shear and vertical-shear disparity. Large random-dot stereoscopic displays were presented with various types of shear disparity. Perceived inclination was the same magnitude for horizontal and vertical shear disparities. Opposed horizontal and vertical shear produced greater inclination than a single-axis shear. Same-sign vertical and horizontal shear (rotation) produced no inclination. These results support the relative-shear hypothesis. Cyclovergence was measured and was insufficient to account for these effects. We conclude that perceived inclination depends on the difference between horizontal- and vertical-shear disparities. Perceived inclination was not based on vertical disparity within small displays or within large displays with a zero-disparity surround. Relative-shear disparities are therefore extracted globally rather than locally.
Vision Research | 1978
Stuart Anstis; Ian P. Howard; Brian J. Rogers
Abstract A stereo analogue of the Cornsweet luminance illusion was discovered, and measured by a null method. Two flat vertical textured surfaces in the frontoparallel plane met at a vertical boundary, at which the left-hand surface curved slightly forward and the right-hand surface curved back by an equal amount. The protruding left edge was jointed to the receding right edge by a step. Result: although the two flat surfaces were equidistant, the left surface appeared to be about half a centimetre nearer to the observer than the right surface.
Perception | 1999
Robert S. Allison; Ian P. Howard; James E. Zacher
The effect of field size, velocity, and visual fixation upon the perception of self-body rotation and tilt was examined in a rotating furnished room. Subjects sat in a stationary chair in the furnished room which could be rotated about the body roll axis. For full-field conditions, complete 360° body rotation (tumbling) was the most common sensation (felt by 80% of subjects). Constant tilt or partial tumbling (less than 360° rotation) occurred more frequently with a small field of view (20 deg). The number of subjects who experienced complete tumbling increased with increases in field of view and room velocity (for velocities between 15 and 30° s−1). The speed of perceived self-rotation relative to room rotation also increased with increasing field of view.
Perception | 1991
Thomas Heckmann; Ian P. Howard
Induced motion (IM) is illusory motion of a stationary test target opposite to the direction of the real motion of the inducing stimulus. We define egocentric IM as an apparent motion of the test target relative to the observer, and vection-entrained IM as an apparent motion of a stationary object along with an apparent motion of the self (vection) induced by the same stimulus. These two forms of IM are often confounded, and tests for distinguishing between them have not been devised. We have devised such tests. Our test for egocentric IM relies on evidence that this form of IM is due mainly to a misregistration of eye movements when optokinetic nystagmus (OKN) is inhibited, and on evidence that OKN is evoked only by stimuli in the plane of convergence. Our test for vection-entrained IM relies on evidence that vection is evoked only by the more distant of two superimposed inducing stimuli. Thus we found egocentric IM to be induced without vection or vection-entrained IM when subjects converged on a foreground moving display with a stationary display in the background, and vection-entrained IM to be induced without egocentric IM when subjects converged on a stationary-foreground display with a moving display in the background. The two types of IM were evoked in opposite directions at the same time when subjects converged on a foreground moving display while a background display moved in the opposite direction. The two forms of IM showed no signs of interaction, and we conclude that they rely on independent motion mechanisms that operate within distinct frames of reference. A control experiment suggested that the depth adjacency effect in IM is determined by the depth adjacency of the inducing stimulus to convergence, not just to the test target.
Perception | 1978
Ian P. Howard
Piaget and Inhelder showed that children do not realize that the surface of a fluid remains horizontal in a tilted vessel. Several studies have since shown that many adults do not have an adequate concept of the water-level principle. However, in all these studies, drawings of vessels, or other abstract displays, were used. The present experiment is an investigation of whether adults who do not know the water-level principle are able to recognize the correct orientation of a fluid surface in realistic three-dimensional scenes and in cinematographic sequences. It was found that all subjects who could state the principle clearly, could precisely and accurately recognize the correct fluid level. More than half the subjects did not know the principle and all these subjects showed evidence in their judgments of only the crudest perceptual schema.
Journal of Vision | 2009
Kazuho Fukuda; Laurie M. Wilcox; Robert S. Allison; Ian P. Howard
The stereoscopic system tolerates some vertical misalignment of the images in the eyes. However, the reported tolerance for an isolated line stimulus (approximately 4 degrees) is greater than for a random-dot stereogram (RDS, approximately 45 arcmin). We hypothesized that the greater tolerance can be attributed to monoptic depth signals (E. Hering, 1861; M. Kaye, 1978; L. M. Wilcox, J. M. Harris, & S. P. McKee, 2007). We manipulated the vertical misalignment of a pair of isolated stereoscopic dots to assess the contribution of each depth signal separately. For the monoptic stimuli, where only one half-image was present, equivalent horizontal and vertical offsets were imposed instead of disparity. Judgments of apparent depth were well above chance, though there was no conventional disparity signal. For the stereoscopic stimuli, one element was positioned at the midline where monoptic depth perception falls to chance but conventional disparity remains. Subjects lost the depth percept at a vertical misalignment of between 44 and 88 arcmin, which is much smaller than the limit found when both signals were provided. This tolerance for isolated stimuli is comparable to the reported tolerance for RDS. We conclude that previous reports of the greater tolerance to vertical misalignment for isolated stimuli arose from the use of monoptic depth signals.