Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian P. Lewkowich is active.

Publication


Featured researches published by Ian P. Lewkowich.


Journal of Experimental Medicine | 2005

CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function

Ian P. Lewkowich; Nancy S. Herman; Kathleen W. Schleifer; Matthew P. Dance; Brian L. Chen; Krista Dienger; Alyssa Sproles; Jaimin S. Shah; Jörg Köhl; Yasmine Belkaid; Marsha Wills-Karp

The role of natural CD4+CD25+ regulatory T (T reg) cells in the control of allergic asthma remains poorly understood. We explore the impact of T reg cell depletion on the allergic response in mice susceptible (A/J) or comparatively resistant (C3H) to the development of allergen-induced airway hyperresponsiveness (AHR). In C3H mice, anti-CD25–mediated T reg cell depletion before house dust mite treatment increased several features of the allergic diathesis (AHR, eosinophilia, and IgE), which was concomitant with elevated T helper type 2 (Th2) cytokine production. In similarly T reg cell–depleted A/J mice, we observed a moderate increase in airway eosinophilia but no effects on AHR, IgE levels, or Th2 cytokine synthesis. As our experiments suggested that T reg cell depletion in C3H mice before sensitization was sufficient to enhance the allergic phenotype, we characterized dendritic cells (DCs) in T reg cell–depleted C3H mice. T reg cell–depleted mice had increased numbers of pulmonary myeloid DCs with elevated expression of major histocompatibility complex class II, CD80, and CD86. Moreover, DCs from T reg cell–depleted mice demonstrated an increased capacity to stimulate T cell proliferation and Th2 cytokine production, which was concomitant with reduced IL-12 expression. These data suggest that resistance to allergen-driven AHR is mediated in part by CD4+CD25+ T reg cell suppression of DC activation and that the absence of this regulatory pathway contributes to susceptibility.


Nature Immunology | 2010

Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma

Stephane Lajoie; Ian P. Lewkowich; Yusuke Suzuki; Jennifer R. Clark; Alyssa Sproles; Krista Dienger; Alison L. Budelsky; Marsha Wills-Karp

Severe asthma is associated with the production of interleukin 17A (IL-17A). The exact role of IL-17A in severe asthma and the factors that drive its production are unknown. Here we demonstrate that IL-17A mediated severe airway hyperresponsiveness (AHR) in susceptible strains of mice by enhancing IL-13-driven responses. Mechanistically, we demonstrate that IL-17A and AHR were regulated by allergen-driven production of anaphylatoxins, as mouse strains deficient in complement factor 5 (C5) or the complement receptor C5aR mounted robust IL-17A responses, whereas mice deficient in C3aR had fewer IL-17-producing helper T cells (TH17 cells) and less AHR after allergen challenge. The opposing effects of C3a and C5a were mediated through their reciprocal regulation of IL-23 production. These data demonstrate a critical role for complement-mediated regulation of the IL-23–TH17 axis in severe asthma.


Journal of Clinical Investigation | 2006

A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma

Jörg Köhl; Ralf Baelder; Ian P. Lewkowich; Manoj Pandey; Heiko Hawlisch; Lihua Wang; Jennifer Best; Nancy S. Herman; Alyssa Sproles; Jörg Zwirner; Jeffrey A. Whitsett; Craig Gerard; Georgia Sfyroera; John D. Lambris; Marsha Wills-Karp

Complement component 5 (C5) has been described as either promoting or protecting against airway hyperresponsiveness (AHR) in experimental allergic asthma, suggesting pleomorphic effects of C5. Here we report that local pharmacological targeting of the C5a receptor (C5aR) prior to initial allergen sensitization in murine models of inhalation tolerance or allergic asthma resulted in either induction or marked enhancement of Th2-polarized immune responses, airway inflammation, and AHR. Importantly, C5aR-deficient mice exhibited a similar, increased allergic phenotype. Pulmonary allergen exposure in C5aR-targeted mice resulted in increased sensitization and accumulation of CD4+ CD69+ T cells associated with a marked increase in pulmonary myeloid, but not plasmacytoid, DC numbers. Pulmonary DCs from C5aR-targeted mice produced large amounts of CC chemokine ligand 17 (CCL17) and CCL22 ex vivo, suggesting a negative impact of C5aR signaling on pulmonary homing of Th2 cells. In contrast, C5aR targeting in sensitized mice led to suppressed airway inflammation and AHR but was still associated with enhanced production of Th2 effector cytokines. These data suggest a dual role for C5a in allergic asthma, i.e., protection from the development of maladaptive type 2 immune responses during allergen sensitization at the DC/T cell interface but enhancement of airway inflammation and AHR in an established inflammatory environment.


Nature | 2011

Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells

James A. Stefater; Ian P. Lewkowich; Sujata Rao; Giovanni Mariggi; April C. Carpenter; Adam R. Burr; Jieqing Fan; Rieko Ajima; Jeffery D. Molkentin; Bart O. Williams; Marsha Wills-Karp; Jeffrey W. Pollard; Terry P. Yamaguchi; Napoleone Ferrara; Holger Gerhardt; Richard A. Lang

Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally, somatic deletion in RMCs of the Wnt ligand transporter Wntless results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF). These findings indicate that resident myeloid cells can use a non-canonical, Wnt–Flt1 pathway to suppress angiogenic branching.


Journal of Experimental Medicine | 2012

Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection

Marsha Wills-Karp; Reena Rani; Krista Dienger; Ian P. Lewkowich; James G. Fox; Charles Perkins; Lauren Lewis; Fred D. Finkelman; Dirk E. Smith; Paul J. Bryce; Evelyn A. Kurt-Jones; Timothy C. Wang; Umasundari Sivaprasad; Gurjit K. Khurana Hershey; De’Broski R. Herbert

The repair protein trefoil factor 2 promotes Th2 responses to helminth infection and allergens in part by inducing IL-33.


Proceedings of the National Academy of Sciences of the United States of America | 2013

IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms

Li-Yin Hung; Ian P. Lewkowich; Lucas A. Dawson; Jordan Downey; Yanfen Yang; Dirk E. Smith; De’Broski R. Herbert

Parasitic helminths are a major cause of chronic human disease, affecting more than 3 billion people worldwide. Host protection against most parasitic helminths relies upon Type 2 cytokine production, but the mechanisms that regulate interleukin (IL) 4 and 13 production from CD4+ T helper 2 cells (TH2) and innate lymphoid type 2 cells (ILC2s) remain incompletely understood. The epithelial cell-derived cytokines IL-25 and IL-33 promote Type 2 responses, but the extent of functional redundancy between these cytokines is unclear and whether Type 2 memory relies upon either IL-25 or IL-33 is unknown. Herein, we demonstrate a pivotal role for IL-33 in driving primary and anamnestic immunity against the rodent hookworm Nippostrongylus brasiliensis. IL-33–deficient mice have a selective defect in ILC2–derived IL-13 during both primary and secondary challenge infections but generate stronger canonical CD4+ T helper 2 cells responses (IL-4, IgE, mast cells, and basophils) than WT controls. Lack of IL-13 production in IL-33–deficient mice impairs resistin-like molecule beta (RELMβ) expression and eosinophil recruitment, which are two mechanisms that eliminate N. brasiliensis parasites from infected hosts. Thus, IL-33 is requisite for IL-13 but not IL-4–driven Type 2 responses during hookworm infection.


PLOS ONE | 2008

Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice

Ian P. Lewkowich; Stephane Lajoie; Jennifer R. Clark; Nancy S. Herman; Alyssa Sproles; Marsha Wills-Karp

Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs) are important mediators of allergic asthma, yet the precise signals which render endogenous DCs “pro-asthmatic”, and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J), or resistant (C3H) to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC) allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23), whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs) to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness.


Journal of Immunology | 2009

A Protective Role for C5a in the Development of Allergic Asthma Associated with Altered Levels of B7-H1 and B7-DC on Plasmacytoid Dendritic Cells

Xun Zhang; Ian P. Lewkowich; Gabriele Köhl; Jennifer R. Clark; Marsha Wills-Karp; Jörg Köhl

The role of complement in the development of maladaptive immunity in experimental allergic asthma is unclear. In this study, we show that C3a receptor (C3aR)-deficient mice are protected from the development of Th2 immunity in a model of house dust mite-induced asthma. C5a receptor (C5aR)-targeting of C3aR-deficient mice during allergen sensitization not only reversed the protective effect but enhanced Th2 cytokine production, airway inflammation, and airway responsiveness, suggesting that the reduced allergic phenotype in C3aR-deficient mice results from protective C5aR signaling. In support of this view, C5aR expression in C3aR-deficient pulmonary dendritic cells (DCs) was increased when compared with wild-type DCs. Moreover, C5aR targeting regulated the frequency of pulmonary plasmacytoid DCs expressing costimulatory molecules B7-H1 and B7-DC. Ex vivo targeting of B7-H1 and B7-DC increased Th2 cytokine production from T cells of wild-type but not of C5aR-targeted mice, suggesting a protective role for C5a through regulation of B7 molecule expression on plasmacytoid DCs.


Cancer Research | 2014

Myeloid WNT7b Mediates the Angiogenic Switch and Metastasis in Breast Cancer

Eun-Jin Yeo; Luca Cassetta; Bin-Zhi Qian; Ian P. Lewkowich; Jiufeng Li; James A. Stefater; April N. Smith; Lisa Wiechmann; Yihong Wang; Jeffrey W. Pollard; Richard A. Lang

Oncogenic targets acting in both tumor cells and tumor stromal cells may offer special therapeutic appeal. Interrogation of the Oncomine database revealed that 52 of 53 human breast carcinomas showed substantial upregulation of WNT family ligand WNT7B. Immunolabeling of human mammary carcinoma showed that WNT7B immunoreactivity was associated with both tumor cells and with tumor-associated macrophages. In the MMTV-PymT mouse model of mammary carcinoma, we found tumor progression relied upon WNT7B produced by myeloid cells in the microenvironment. Wnt7b deletion in myeloid cells reduced the mass and volume of tumors due to a failure in the angiogenic switch. In the tumor overall, there was no change in expression of Wnt/β-catenin pathway target genes, but in vascular endothelial cells (VEC), expression of these genes was reduced, suggesting that VECs respond to Wnt/β-catenin signaling. Mechanistic investigations revealed that failure of the angiogenic switch could be attributed to reduced Vegfa mRNA and protein expression in VECs, a source of VEGFA mRNA in the tumor that was limiting in the absence of myeloid WNT7B. We also noted a dramatic reduction in lung metastasis associated with decreased macrophage-mediated tumor cell invasion. Together, these results illustrated the critical role of myeloid WNT7B in tumor progression, acting at the levels of angiogenesis, invasion, and metastasis. We suggest that therapeutic suppression of WNT7B signaling might be advantageous due to targeting multiple aspects of tumor progression.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung

Marc E. Rothenberg; Matthew P. Doepker; Ian P. Lewkowich; Mónica G. Chiaramonte; Keith F. Stringer; Fred D. Finkelman; Carol L. MacLeod; Lesley G. Ellies; Nives Zimmermann

Arginine is an amino acid that serves as a substrate for nitric oxide synthase and arginase. As such, arginine has the potential to influence diverse fundamental processes in the lung. Here we report that the arginine transport protein, cationic amino acid transporter (CAT)2, has a critical role in regulating lung inflammatory responses. Analysis of CAT2-deficient mice revealed spontaneous inflammation in the lung. Marked eosinophilia, associated with up-regulation of eotaxin-1, was present in the bronchoalveolar lavage fluid of 3-week-old CAT2-deficient mice. The eosinophilia was gradually replaced by neutrophilia in adult mice, while eotaxin-1 levels decreased and GRO-α levels increased. Despite the presence of activated alveolar macrophages in CAT2-deficient mice, NO production was compromised in these cells. Examination of dendritic cell activation, which can be affected by NO release, indicated increased dendritic cell activation in the lungs of CAT2-deficient mice. This process was accompanied by an increase in the number of memory T cells. Thus, our data suggest that CAT2 regulates anti-inflammatory processes in the lungs via regulation of dendritic cell activation and subsequent T cell responses.

Collaboration


Dive into the Ian P. Lewkowich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyssa Sproles

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Krista Dienger

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaclyn W. McAlees

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. Clark

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Phoebe K. Richgels

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Ledford

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kristen Page

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge