Ian R. Fasel
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian R. Fasel.
computer vision and pattern recognition | 2005
Marian Stewart Bartlett; Gwen Littlewort; Mark G. Frank; Claudia Lainscsek; Ian R. Fasel; Javier R. Movellan
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions. We report results on a series of experiments comparing recognition engines, including AdaBoost, support vector machines, linear discriminant analysis. We also explored feature selection techniques, including the use of AdaBoost for feature selection prior to classification by SVM or LDA. Best results were obtained by selecting a subset of Gabor filters using AdaBoost followed by classification with support vector machines. The system operates in real-time, and obtained 93% correct generalization to novel subjects for a 7-way forced choice on the Cohn-Kanade expression dataset. The outputs of the classifiers change smoothly as a function of time and thus can be used to measure facial expression dynamics. We applied the system to to fully automated recognition of facial actions (FACS). The present system classifies 17 action units, whether they occur singly or in combination with other actions, with a mean accuracy of 94.8%. We present preliminary results for applying this system to spontaneous facial expressions.
computer vision and pattern recognition | 2003
Marian Stewart Bartlett; Gwen Littlewort; Ian R. Fasel; Javier R. Movellan
Computer animated agents and robots bring a social dimension to human computer interaction and force us to think in new ways about how computers could be used in daily life. Face to face communication is a real-time process operating at a a time scale in the order of 40 milliseconds. The level of uncertainty at this time scale is considerable, making it necessary for humans and machines to rely on sensory rich perceptual primitives rather than slow symbolic inference processes. In this paper we present progress on one such perceptual primitive. The system automatically detects frontal faces in the video stream and codes them with respect to 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. The face finder employs a cascade of feature detectors trained with boosting techniques [15, 2]. The expression recognizer receives image patches located by the face detector. A Gabor representation of the patch is formed and then processed by a bank of SVM classifiers. A novel combination of Adaboost and SVMs enhances performance. The system was tested on the Cohn-Kanade dataset of posed facial expressions [6]. The generalization performance to new subjects for a 7- way forced choice correct. Most interestingly the outputs of the classifier change smoothly as a function of time, providing a potentially valuable representation to code facial expression dynamics in a fully automatic and unobtrusive manner. The system has been deployed on a wide variety of platforms including Sonys Aibo pet robot, ATRs RoboVie, and CU animator, and is currently being evaluated for applications including automatic reading tutors, assessment of human-robot interaction.
Journal of Multimedia | 2006
Marian Stewart Bartlett; Gwen Littlewort; Mark G. Frank; Claudia Lainscsek; Ian R. Fasel; Javier R. Movellan
Spontaneous facial expressions differ from posed expressions in both which muscles are moved, and in the dynamics of the movement. Advances in the field of automatic facial expression measurement will require development and assessment on spontaneous behavior. Here we present preliminary results on a task of facial action detection in spontaneous facial expressions. We employ a user independent fully automatic system for real time recognition of facial actions from the Facial Action Coding System (FACS). The system automatically detects frontal faces in the video stream and coded each frame with respect to 20 Action units. The approach applies machine learning methods such as support vector machines and AdaBoost, to texture-based image representations. The output margin for the learned classifiers predicts action unit intensity. Frame-by-frame intensity measurements will enable investigations into facial expression dynamics which were previously intractable by human coding.
Face and Gesture 2011 | 2011
Gwen Littlewort; Jacob Whitehill; Tingfan Wu; Ian R. Fasel; Mark G. Frank; Javier R. Movellan; Marian Stewart Bartlett
We present the Computer Expression Recognition Toolbox (CERT), a software tool for fully automatic real-time facial expression recognition, and officially release it for free academic use. CERT can automatically code the intensity of 19 different facial actions from the Facial Action Unit Coding System (FACS) and 6 different protoypical facial expressions. It also estimates the locations of 10 facial features as well as the 3-D orientation (yaw, pitch, roll) of the head. On a database of posed facial expressions, Extended Cohn-Kanade (CK+ [1]), CERT achieves an average recognition performance (probability of correctness on a two-alternative forced choice (2AFC) task between one positive and one negative example) of 90.1% when analyzing facial actions. On a spontaneous facial expression dataset, CERT achieves an accuracy of nearly 80%. In a standard dual core laptop, CERT can process 320 × 240 video images in real time at approximately 10 frames per second.
Image and Vision Computing | 2006
Gwen Littlewort; Marian Stewart Bartlett; Ian R. Fasel; Joshua Susskind; Javier R. Movellan
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions, including AdaBoost, support vector machines, and linear discriminant analysis. Each video-frame is first scanned in real-time to detect approximately upright-frontal faces. The faces found are scaled into image patches of equal size, convolved with a bank of Gabor energy filters, and then passed to a recognition engine that codes facial expressions into 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. We report results on a series of experiments comparing spatial frequency ranges, feature selection techniques, and recognition engines. Best results were obtained by selecting a subset of Gabor filters using AdaBoost and then training Support Vector Machines on the outputs of the filters selected by AdaBoost. The generalization performance to new subjects for a 7-way forced choice was 93% or more correct on two publicly available datasets, the best performance reported so far on these datasets. Surprisingly, registration of internal facial features was not necessary, even though the face detector does not provide precisely registered images. The outputs of the classifier change smoothly as a function of time and thus can be used for unobtrusive motion capture. We developed an end-to-end system that provides facial expression codes at 24 frames per second and animates a computer generated character. In real-time this expression mirror operates down to resolutions of 16 pixels from eye to eye. We also applied the system to fully automated facial action coding.
international conference on automatic face and gesture recognition | 2006
Marian Stewart Bartlett; Gwen Littlewort; Mark G. Frank; Claudia Lainscsek; Ian R. Fasel; Javier R. Movellan
We present results on a user independent fully automatic system for real time recognition of facial actions from the facial action coding system (FACS). The system automatically detects frontal faces in the video stream and codes each frame with respect to 20 action units. We present preliminary results on a task of facial action detection in spontaneous expressions during discourse. Support vector machines and AdaBoost classifiers are compared. For both classifiers, the output margin predicts action unit intensity
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2009
Jacob Whitehill; Gwen Littlewort; Ian R. Fasel; Marian Stewart Bartlett; Javier R. Movellan
Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.
Computer Vision and Image Understanding | 2005
Ian R. Fasel; Bret Fortenberry; Javier R. Movellan
We formulate a probabilistic model of image generation and derive optimal inference algorithms for finding objects and object features within this framework. The approach models images as a collage of patches of arbitrary size, some of which contain the object of interest and some of which are background. The approach requires development of likelihood-ratio models for object versus background generated patches. These models are learned using boosting methods. One advantage of the generative approach proposed here is that it makes explicit the conditions under which it is optimal. We applied the approach to the problem of finding faces and eyes on arbitrary images. Optimal inference under the proposed model works in real time and is robust to changes in lighting, illumination, and differences in facial structure, including facial expressions and eyeglasses. Furthermore, the system can simultaneously track the eyes and blinks of multiple individuals. Finally we reflect on how the development of perceptive systems like this may help advance our understanding of the human brain.
computer vision and pattern recognition | 2004
Gwen Littlewort; Marian Stewart Bartlett; Ian R. Fasel; Joshua Susskind; Javier R. Movellan
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions, including AdaBoost, support vector machines, and linear discriminant analysis. Each video-frame is first scanned in real-time to detect approximately upright-frontal faces. The faces found are scaled into image patches of equal size, convolved with a bank of Gabor energy filters, and then passed to a recognition engine that codes facial expressions into 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. We report results on a series of experiments comparing spatial frequency ranges, feature selection techniques, and recognition engines. Best results were obtained by selecting a subset of Gabor filters using AdaBoost and then training Support Vector Machines on the outputs of the filters selected by AdaBoost. The generalization performance to new subjects for a 7-way forced choice was 93% or more correct on two publicly available datasets, the best performance reported so far on these datasets. Surprisingly, registration of internal facial features was not necessary, even though the face detector does not provide precisely registered images. The outputs of the classifier change smoothly as a function of time and thus can be used for unobtrusive motion capture. We developed an end-to-end system that provides facial expression codes at 24 frames per second and animates a computer generated character. In real-time this expression mirror operates down to resolutions of 16 pixels from eye to eye. We also applied the system to fully automated facial action coding.
systems, man and cybernetics | 2004
Marian Stewart Bartlett; Gwen Littlewort; Claudia Lainscsek; Ian R. Fasel; Javier R. Movellan
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions. We explored recognition of facial actions from the facial action coding system (FACS), as well as recognition of fall facial expressions. Each video-frame is first scanned in real-time to detect approximately upright frontal faces. The faces found are scaled into image patches of equal size, convolved with a bank of Gabor energy filters, and then passed to a recognition engine that codes facial expressions into 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness, surprise. We report results on a series of experiments comparing recognition engines, including AdaBoost, support vector machines, linear discriminant analysis, as well as feature selection techniques. Best results were obtained by selecting a subset of Gabor filters using AdaBoost and then training support vector machines on the outputs of the filters selected by AdaBoost. The generalization performance to new subjects for recognition of full facial expressions in a 7-way forced choice was 93% correct, the best performance reported so far on the Cohn-Kanade FACS-coded expression dataset. We also applied the system to fully automated facial action coding. The present system classifies 18 action units, whether they occur singly or in combination with other actions, with a mean agreement rate of 94.5% with human FACS codes in the Cohn-Kanade dataset. The outputs of the classifiers change smoothly as a function of time and thus can be used to measure facial expression dynamics.