Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian R. Gentle is active.

Publication


Featured researches published by Ian R. Gentle.


ACS Nano | 2009

Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High- Performance Flexible Electrode

Da-Wei Wang; Feng Li; Jinping Zhao; Wencai Ren; Zhigang Chen; Jun Tan; Zhong-Shuai Wu; Ian R. Gentle; Gao Qing Lu; Hui-Ming Cheng

Freestanding and flexible graphene/polyaniline composite paper was prepared by an in situ anodic electropolymerization of polyaniline film on graphene paper. This graphene-based composite paper electrode, consisting of graphene/polyaniline composite sheets as building blocks, shows a favorable tensile strength of 12.6 MPa and a stable large electrochemical capacitance (233 F g(-1) and 135 F cm(-3) for gravimetric and volumetric capacitances), which outperforms many other currently available carbon-based flexible electrodes and is hence particularly promising for flexible supercapacitors.


ACS Nano | 2013

Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries

Guangmin Zhou; Li-Chang Yin; Da-Wei Wang; Lu Li; Songfeng Pei; Ian R. Gentle; Feng Li; Hui-Ming Cheng

Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.


Chemistry: A European Journal | 2012

Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions

Da-Wei Wang; Feng Li; Li-Chang Yin; Xu Lu; Zhigang Chen; Ian R. Gentle; Gao Qing Max Lu; Hui-Ming Cheng

A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway.


Physical Chemistry Chemical Physics | 2012

A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries

Da-Wei Wang; Guangmin Zhou; Feng Li; Kuang-Hsu Wu; Gao Qing Lu; Hui-Ming Cheng; Ian R. Gentle

A microporous-mesoporous carbon with graphitic structure was developed as a matrix for the sulfur cathode of a Li-S cell using a mixed carbonate electrolyte. Sulfur was selectively introduced into the carbon micropores by a melt adsorption-solvent extraction strategy. The micropores act as solvent-restricted reactors for sulfur lithiation that promise long cycle stability. The mesopores remain unfilled and provide an ion migration pathway, while the graphitic structure contributes significantly to low-resistance electron transfer. The selective distribution of sulfur in micropores was characterized by X-ray photoelectron spectroscopy (XPS), nitrogen cryosorption analysis, transmission electron microscopy (TEM), X-ray powder diffraction and Raman spectroscopy. The high-rate stable lithiation-delithiation of the carbon-sulfur cathode was evaluated using galvanostatic charge-discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode is able to operate reversibly over 800 cycles with a 1.8 C discharge-recharge rate. This integration of a micropore reactor, a mesopore ion reservoir, and a graphitic electron conductor represents a generalized strategy to be adopted in research on advanced sulfur cathodes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Role of semiconductivity and ion transport in the electrical conduction of melanin

Albertus B. Mostert; Benjamin J. Powell; Francis L. Pratt; Graeme R. Hanson; Tadeusz Sarna; Ian R. Gentle; Paul Meredith

Melanins are pigmentary macromolecules found throughout the biosphere that, in the 1970s, were discovered to conduct electricity and display bistable switching. Since then, it has been widely believed that melanins are naturally occurring amorphous organic semiconductors. Here, we report electrical conductivity, muon spin relaxation, and electron paramagnetic resonance measurements of melanin as the environmental humidity is varied. We show that hydration of melanin shifts the comproportionation equilibrium so as to dope electrons and protons into the system. This equilibrium defines the relative proportions of hydroxyquinone, semiquinone, and quinone species in the macromolecule. As such, the mechanism explains why melanin at neutral pH only conducts when “wet” and suggests that both carriers play a role in the conductivity. Understanding that melanin is an electronic-ionic hybrid conductor rather than an amorphous organic semiconductor opens exciting possibilities for bioelectronic applications such as ion-to-electron transduction given its biocompatibility.


Letters in Applied Microbiology | 2009

Issues in determining factors influencing bacterial attachment: A review using the attachment of Escherichia coli to abiotic surfaces as an example

Rebecca M. Goulter; Ian R. Gentle; Gary A. Dykes

An understanding of the mechanisms which facilitate the attachment of Escherichia coli and other bacterial species to abiotic surfaces is desired by numerous industries including the food and medical industries. Numerous studies have attempted to explain bacterial attachment as a function of bacterial properties such as cellular surface charge, hydrophobicity and outer membrane proteins amongst others. Conflicting evidence in the literature both for and against a positive relationship may arise from the nature of the test methods used to measure them. A handful of recent studies utilizing technologies such as atomic force microscopy have begun to look at bacterial attachment at a single cell and molecular level. These studies may provide the information required to fully understand the underlying factors which influence bacterial cell attachment to abiotic surfaces. A number of issues in determining the influential factors of bacterial attachment have been identified from the literature: a lack of standardization and sensitivity of methods, as well as the value of measuring bulk properties of a number of cells rather than the behaviour of single cells which may overlook key interactions at a molecular level. These issues will need to be addressed in future studies in this area.


Advances in Colloid and Interface Science | 2001

The structures of Langmuir-Blodgett films of fatty acids and their salts.

Jian Bang Peng; G.T Barnes; Ian R. Gentle

Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-trans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern. Multilayer films of the acids show only a single-step order-disorder transition at the melting point. This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached. Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed. In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains.


Chemsuschem | 2015

A Discussion on the Activity Origin in Metal-Free Nitrogen-Doped Carbons For Oxygen Reduction Reaction and their Mechanisms.

Kuang-Hsu Wu; Da-Wei Wang; Dang Sheng Su; Ian R. Gentle

The origin of oxygen reduction reaction activity in metal-free N-doped carbons has been a stimulating, yet unsolved issue for the rational design of cost-effective electrocatalysts for fuel cells and metal-air batteries. At present, there are several inconsistent opinions on the materials chemistry and the mechanism of the oxygen reduction reaction (ORR) performed on this type of materials. This article provides a brief review of the current understanding of ORR processes and the history of electrocatalyst development. With special attention, the focus of the discussion is on the major contentions of the current opinions towards metal-free N-doped carbon chemistry and the arguments for the probable ORR mechanisms. By clarifying the fundamental aspects of each opinion, a converging consensus on N-doped carbon electrocatalysts can be established and thus facilitate the substantial development of large-capacity energy devices.


Journal of Materials Chemistry | 2012

A water-dielectric capacitor using hydrated graphene oxide film

Da-Wei Wang; Aijun Du; Elena Taran; Gao Qing Lu; Ian R. Gentle

Despite the widespread use of paper, plastic or ceramics in dielectric capacitors, water has not been commonly used as a dielectric due to its tendency to become conductive as it easily leaches ions from the environment. We show here that when water is confined between graphene oxide sheets, it can retain its insulating nature and behave as a dielectric. A hydrated graphene oxide film was used as a dielectric spacer to construct a prototype water-dielectric capacitor. The capacitance depends on the water content of the hydrated GO film as well as the voltage applied to the device. Our results show that the capacitance per unit area of the GO film is in the range of 100–800 μF cm−2, which is 5–40 times that of the double layer capacitance per surface area of activated carbon.


Applied Physics Letters | 2012

On the origin of electrical conductivity in the bio-electronic material melanin

A. Bernardus Mostert; B. J. Powell; Ian R. Gentle; Paul Meredith

The skin pigment melanin is one of a few bio-macromolecules that display electrical and photo-conductivity in the solid-state. A model for melanin charge transport based on amorphous semiconductivity has been widely accepted for 40 years. In this letter, we show that a central pillar in support of this hypothesis, namely experimental agreement with a hydrated dielectric model, is an artefact related to measurement geometry and non-equilibrium behaviour. Our results cast significant doubt on the validity of the amorphous semiconductor model and are a reminder of the difficulties of electrical measurements on low conductivity, disordered organic materials.

Collaboration


Dive into the Ian R. Gentle's collaboration.

Top Co-Authors

Avatar

Paul L. Burn

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Da-Wei Wang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuang-Hsu Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gao Qing Lu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Garry J Foran

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Paul E. Shaw

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jian Bang Peng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Qingcong Zeng

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge