Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian R. Sweet is active.

Publication


Featured researches published by Ian R. Sweet.


Transplantation | 2002

Effect of the two-layer (University of Wisconsin solution-perfluorochemical plus O2) method of pancreas preservation on human islet isolation, as assessed by the Edmonton Isolation Protocol.

Shinichi Matsumoto; Sabrina A. Qualley; Shilpa Goel; Derek K. Hagman; Ian R. Sweet; Vincent Poitout; D. Michael Strong; R. Paul Robertson; Jo Anna Reems

Background. Current techniques for isolating islets require that pancreata stored with University of Wisconsin solution (UW) are processed within 12 hours of cold storage. In this study, we hypothesized that the two-layer method (TLM) could extend the acceptable preservation period of pancreata before islet isolation and increase islet yields. Methods. In the first experimental set, eight pancreata were maintained for an average of 8.3±1.2 hours in UW and transferred into the TLM for an additional 14.3±1.1 hours for a total cold ischemic period of 22.6±1.6 hours (prolonged TLM). Four pancreata were maintained as a control group in UW alone for a total of 21.3±2.0 hours. In the second experimental set, six pancreata were maintained for an average of 6.4±1.8 hours in UW followed by 4.8±0.8 hours with the TLM for a total preservation time of 11.3±2.5 hours (short TLM). The control organs for the short TLM group were stored for an average of 9.5±1.3 hours in UW alone. Islets were isolated and evaluated according to the Edmonton protocol. Results. Between each group of the two experimental sets, there was no significant difference in donor-related factors (i.e. gender, age, body mass index [BMI], etc.). The TLM as compared with UW preservation resulted in a significant increase in islet yields postpurification for both short (3,353±394 islet equivalents [IE] vs. 2,027±415 IE; mean±SEM) and prolonged (2,404±503 IE vs. 514±180 IE) periods of storage. Furthermore, islet yields after prolonged storage with the TLM were not significantly different from organs maintained for only a short period with UW (P =0.17). The quality of islets as assessed by size, postculture viability, survival rates, insulin content, and insulin secretion were similar for each of the four groups. Conclusion. In comparison with UW organ preservation, exposure of pancreata to the TLM result in greater islet yields and extended preservation times.


Diabetologia | 1999

Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis

E. Davis; Antonio L. Cuesta-Muñoz; M. Raoul; Carol Buettger; Ian R. Sweet; M. Moates; Mark A. Magnuson; Franz M. Matschinsky

Aims/hypothesis. Mutations of the glucokinase gene cause hyperglycaemia or hypoglycaemia. A quantitative understanding of these defects of glucose homeostasis linked to the glucokinase gene was lacking. Therefore a database of kinetic variables of wild-type and 20 missense mutants of glucokinase was developed and used in mathematical modelling to predict the thresholds for glucose-stimulated insulin release. Methods. Recombinant human glucokinase was generated in E. coli. The kcat, glucose S0.5, ATP Km, and Hill number of glucokinase were determined. Inhibition by Stearoyl CoA and glucokinase regulatory protein and thermal stability were assayed for all mutants kinetically similar to wild-type glucokinase. A mathematical model predicting the threshold for glucose-stimulated insulin release was constructed. This model is based on the two substrate kinetics of glucokinase and the kinetic variables of the database. It is assumed that both glucokinase gene alleles are equally expressed in beta-cells and that induction of glucokinase occurs as a function of basal blood glucose. Results. Large changes, varying greatly between mutants were found in nearly all variables. Glucokinase flux at threshold for glucose-stimulated insulin release was about 25 % of total phosphorylating potential in the normal beta-cell and this was used to predict thresholds for the mutant heterozygotes. Clinical data for maturity onset diabetes of the young type linked to the glucokinase gene and familial hyperinsulinaemic hypoglycaemia linked to the glucokinase gene and the glucokinase kinetic data of this study were used to test the model. The model predicts fasting blood glucose between 3 and 7 mmol/l in these cases. Conclusion/interpretation. A kinetics database of wild-type and 20 mutants of glucokinase was developed. Many kinetic differences were found for the mutants. The mathematical model to calculate the threshold for glucose-stimulated insulin release predicts fasting blood glucose between 3 and 7 mmol/l in subjects with glucokinase gene mutations. [Diabetologia 42: 1175–1186]


Journal of Biological Chemistry | 2012

NADPH Oxidase-derived Reactive Oxygen Species Increases Expression of Monocyte Chemotactic Factor Genes in Cultured Adipocytes

Chang Yeop Han; Tomio Umemoto; Mohamed Omer; Laura J. Den Hartigh; Tsuyoshi Chiba; Renee C. LeBoeuf; Carolyn L. Buller; Ian R. Sweet; Subramaniam Pennathur; E. Dale Abel; Alan Chait

Background: Excess nutrients induce adipose inflammation. Results: Excess glucose and palmitate generate ROS via NOX4 by a mechanism that involves the PPP and translocation of NOX4 into LRs, rather than by mitochondrial oxidation. Conclusion: NOX4 activates monocyte chemotactic factor expression. Significance: Understanding the source of ROS generation may lead to the development of new therapeutic targets for adipose tissue inflammation. Excess glucose and free fatty acids delivered to adipose tissue causes local inflammation, which contributes to insulin resistance. Glucose and palmitate generate reactive oxygen species (ROS) in adipocytes, leading to monocyte chemotactic factor gene expression. Docosahexaenoate (DHA) has the opposite effect. In this study, we evaluated the potential sources of ROS in the presence of excess nutrients. Differentiated 3T3-L1 adipocytes were exposed to palmitate and DHA (250 μm) in either 5 or 25 mm glucose to evaluate the relative roles of mitochondrial electron transport and NADPH oxidases (NOX) as sources of ROS. Excess glucose and palmitate did not increase mitochondrial oxidative phosphorylation. However, glucose exposure increased glycolysis. Of the NOX family members, only NOX4 was expressed in adipocytes. Moreover, its activity was increased by excess glucose and palmitate and decreased by DHA. Silencing NOX4 inhibited palmitate- and glucose-stimulated ROS generation and monocyte chemotactic factor gene expression. NADPH, a substrate for NOX, and pentose phosphate pathway activity increased with glucose but not palmitate and decreased with DHA exposure. Inhibition of the pentose phosphate pathway by glucose-6-phosphate dehydrogenase inhibitors and siRNA suppressed ROS generation and monocyte chemotactic factor gene expression induced by both glucose and palmitate. Finally, both high glucose and palmitate induced NOX4 translocation into lipid rafts, effects that were blocked by DHA. Excess glucose and palmitate generate ROS via NOX4 rather than by mitochondrial oxidation in cultured adipocytes. NOX4 is regulated by both NADPH generated in the PPP and translocation of NOX4 into lipid rafts, leading to expression of monocyte chemotactic factors.


Diabetes Technology & Therapeutics | 2002

Continuous measurement of oxygen consumption by pancreatic islets.

Ian R. Sweet; Gamal Khalil; Angela R. Wallen; Mark Steedman; Kenneth A. Schenkman; Jo Anna Reems; Steven E. Kahn; James B. Callis

The rate of oxygen consumption is an important measure of mitochondrial function in all aerobic cells. In pancreatic beta cells, it is linked to the transduction mechanism that mediates glucose-stimulated insulin secretion. However, measurement of oxygen consumption over long periods of time is technically difficult owing to the error resulting from baseline drift and the challenge of measuring small changes in oxygen tension. We have adapted an ultrastable oxygen sensor based on the detection of the decay of the phosphorescent emission from an oxygen-sensitive dye to a previously developed islet flow culture system. The drift of the sensor is approximately 0.3%/24 h, allowing for the continuous measurement of oxygen consumption by 300 islets (or about 6 x 10(5) cells) for hours or days. Rat islets placed in the perifusion chamber for 24 h were well maintained as reflected by membrane integrity, insulin secretion, and oxygen consumption. Both acute changes in oxygen consumption as induced by glucose and chronic changes as induced by sequential pulses of azide were resolved. The features of the flow culture system--aseptic conditions, fine temporal control of the composition of the media, and the collection of outflow fractions for measurement of insulin, and other products--facilitate a systematic approach to assessing metabolic and functional viability in responses to a variety of stimuli. Applications to the measurement of effects of hypoxia on insulin secretion, membrane integrity, and the redox state of cytochromes are demonstrated. The system has particular application to the field of human islet transplantation, where assessment and the study of islet viability have been hampered by a lack of experimental methods.


Diabetes | 1988

Rapid Reduction and Return of Surface Insulin Receptors After Exposure to Brief Pulses of Insulin in Perifused Rat Hepatocytes

Charles J. Goodner; Ian R. Sweet; H. C. Harrison

Hepatic receptors are normally exposed to discrete pulses of insulin and glucagon at intervals of 8 to 16 min. Using a multicolumn system for perifusing hepatocytes, we investigated the effect of this pattern on the normal processing of the insulin receptor. Surface-receptor binding was measured in acid-washed cells harvested from individual columns. The number of high-affinity surface receptors fell to a nadir 1 min after the end of a 3-min square-wave pulse of insulin. The maximum reduction reached 45% of baseline at amplitudes of 1000 μU/ml or above. The number of surface binding sites returned to baseline 15 min after the end of the pulse, but the affinity constant of the high-affinity receptor was unchanged. The reduction of surface binding was dose dependent, with an ED50, of 251 ± 34 μU/ml. Prolonging the pulse to 60 min did not affect the nadir or the rate of restoration of the surface-receptor population. The change in surface binding was reduced at 15°C and abolished at 4°C. After a pulse, the pattern of change was a period of rapid decline to a nadir (t1/2 ≤ 1 min) that persisted for 3–5 min, followed by restoration of surface binding that reached baseline in 10–15 min. This same pattern was present after six ED95 pulses delivered at intervals of 15 min. These data indicate that the internalization of hepatocyte surface receptors and their recycling and reinsertion into the plasma membrane can be entrained to pulses at the physiologic pulse frequency.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat

Bethany P. Cummings; Erin K. Digitale; Kimber L. Stanhope; James L. Graham; Denis G. Baskin; Benjamin J. Reed; Ian R. Sweet; Steven C. Griffen; Peter J. Havel

The prevalence of type 2 diabetes (T2DM) is increasing, creating a need for T2DM animal models for the study of disease pathogenesis, prevention, and treatment. The purpose of this project was to develop a rat model of T2DM that more closely models the pathophysiology of T2DM in humans. The model was created by crossing obese Sprague-Dawley rats with insulin resistance resulting from polygenic adult-onset obesity with Zucker diabetic fatty-lean rats that have a defect in pancreatic beta-cell function but normal leptin signaling. We have characterized the model with respect to diabetes incidence; age of onset; longitudinal measurements of glucose, insulin, and lipids; and glucose tolerance. Longitudinal fasting glucose and insulin data demonstrated progressive hyperglycemia (with fasting and fed glucose concentrations >250 and >450 mg/dl, respectively) after onset along with hyperinsulinemia resulting from insulin resistance at onset followed by a progressive decline in circulating insulin concentrations, indicative of beta-cell decompensation. The incidence of diabetes in male and female rats was 92 and 43%, respectively, with an average age of onset of 6 mo in males and 9.5 mo in females. Results from intravenous glucose tolerance tests, pancreas immunohistochemistry, and islet insulin content further support a role for beta-cell dysfunction in the pathophysiology of T2DM in this model. Diabetic animals also exhibit glycosuria, polyuria, and hyperphagia. Thus diabetes in the UC Davis-T2DM rat is more similar to clinical T2DM in humans than in other existing rat models and provides a useful model for future studies of the pathophysiology, treatment, and prevention of T2DM.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Flow of energy in the outer retina in darkness and in light

Jonathan D. Linton; Lars C. Holzhausen; Norbert Babai; Hongman Song; Kiyoharu Miyagishima; George W. Stearns; Ken Lindsay; J. Wei; Andrei O. Chertov; Theo A. Peters; Romeo Caffé; Helma Pluk; Mathias W. Seeliger; Naoyuki Tanimoto; Kimberly K. Fong; Laura Bolton; Denise L. T. Kuok; Ian R. Sweet; Theodore M. Bartoletti; Roxana A. Radu; Gabriel H. Travis; Willam N. Zagotta; Ellen Townes-Anderson; Ed Parker; Catharina E.E.M. Van der Zee; Alapakkam P. Sampath; Maxim Sokolov; Wallace B. Thoreson; James B. Hurley

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor’s synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


American Journal of Transplantation | 2007

Glucose‐Stimulated Increment in Oxygen Consumption Rate as a Standardized Test of Human Islet Quality

Ian R. Sweet; Merle L. Gilbert; Stephen Scott; Ivan Todorov; Rich Jensen; Indu Nair; Ismail H. Al-Abdullah; Jeffrey Rawson; Fouad Kandeel; Kevin Ferreri

Standardized assessment of islet quality is imperative for clinical islet transplantation. We have previously shown that the increment in oxygen consumption rate stimulated by glucose (ΔOCRglc) can predict in vivo efficacy of islet transplantation in mice. To further evaluate the approach, we studied three factors: islet specificity, islet composition and agreement between results obtained by different groups. Equivalent perifusion systems were set up at the City of Hope and the University of Washington and the values of ΔOCRglc obtained at both institutions were compared. Islet specificity was determined by comparing ΔOCRglc in islet and nonislet tissue. The ΔOCRglc ranged from 0.01 to 0.19 nmol/min/100 islets (n = 14), a wide range in islet quality, but the values obtained by the two centers were similar. The contribution from nonislet impurities was negligible (ΔOCRglc was 0.12 nmol/min/100 islets vs. 0.007 nmol/min/100 nonislet clusters). The ΔOCRglc was statistically independent of percent beta cells, demonstrating that ΔOCRglc is governed more by islet quality than by islet composition. The ΔOCRglc, but not the absolute level of OCR, was predictive of reversal of hyperglycemia in diabetic mice. These demonstrations lay the foundation for testing ΔOCRglc as a measurement of islet quality for human islet transplantation.


Cell Cycle | 2010

TRPM7 regulates quiescent/proliferative metabolic transitions in lymphocytes.

Jaya Sahni; Richard N. Tamura; Ian R. Sweet; Andrew M. Scharenberg

A unique property of lymphocytes among all body tissues is their capacity for rapid proliferation in the context of responding to infectious challenges.


Journal of Biological Chemistry | 2011

Aging Neural Progenitor Cells Have Decreased Mitochondrial Content and Lower Oxidative Metabolism

Elizabeth A. Stoll; Willy Cheung; Andrei M. Mikheev; Ian R. Sweet; Jason H. Bielas; Jing Zhang; Robert C. Rostomily; Philip J. Horner

Background: Mitochondrial dysfunction occurs in many tissues during normal aging. Results: Aged neural progenitor cells (NPCs) have decreased regenerative capacity, fewer functional mitochondria, and less oxygen consumption compared with young adult NPCs. Conclusion: Coordinated changes in proteomics, subcellular structure, and physiology demonstrate an altered metabolic strategy in aged NPCs. Significance: Such alterations may explain the age-dependent responses to hypoxia encountered during tumor or stroke. Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology.

Collaboration


Dive into the Ian R. Sweet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Cook

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gamal Khalil

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Martin Sadilek

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Adam Neal

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge