Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Sipula is active.

Publication


Featured researches published by Ian Sipula.


Diabetes | 2010

Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance

Wan Huang; Anantha S. Metlakunta; Nikolaos Dedousis; Pili Zhang; Ian Sipula; John J. Dubé; Donald K. Scott; Robert M. O'Doherty

OBJECTIVE Increased activity of the innate immune system has been implicated in the pathogenesis of the dyslipidemia and insulin resistance associated with obesity and type 2 diabetes. In this study, we addressed the potential role of Kupffer cells (liver-specific macrophages, KCs) in these metabolic abnormalities. RESEARCH DESIGN AND METHODS Rats were depleted of KCs by administration of gadolinium chloride, after which all animals were exposed to a 2-week high-fat or high-sucrose diet. Subsequently, the effects of these interventions on the development of hepatic insulin resistance and steatosis were assessed. In further studies, the effects of M1-polarized KCs on hepatocyte lipid metabolism and insulin sensitivity were addressed. RESULTS As expected, a high-fat or high-sucrose diet induced steatosis and hepatic insulin resistance. However, these metabolic abnormalities were prevented when liver was depleted of KCs. In vitro, KCs recapitulated the in vivo effects of diet by increasing hepatocyte triglyceride accumulation and fatty acid esterification, and decreasing fatty acid oxidation and insulin responsiveness. To address the mechanisms(s) of KC action, we inhibited a panel of cytokines using neutralizing antibodies. Only neutralizing antibodies against tumor necrosis factor-α (TNFα) attenuated KC-induced alterations in hepatocyte fatty acid oxidation, triglyceride accumulation, and insulin responsiveness. Importantly, KC TNFα levels were increased by diet in vivo and in isolated M1-polarized KCs in vitro. CONCLUSIONS These data demonstrate a role for liver macrophages in diet-induced alterations in hepatic lipid metabolism and insulin sensitivity, and suggest a role for these cells in the etiology of the metabolic abnormalities of obesity/type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2008

A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels

Maja Stefanovic-Racic; Germán Perdomo; Benjamin S. Mantell; Ian Sipula; Nicholas F. Brown; Robert M. O'Doherty

Nonalcoholic fatty liver disease (NAFLD), hypertriglyceridemia, and elevated free fatty acids are present in the majority of patients with metabolic syndrome and type 2 diabetes mellitus and are strongly associated with hepatic insulin resistance. In the current study, we tested the hypothesis that an increased rate of fatty acid oxidation in liver would prevent the potentially harmful effects of fatty acid elevation, including hepatic triglyceride (TG) accumulation and elevated TG secretion. Primary rat hepatocytes were transduced with adenovirus encoding carnitine palmitoyltransferase 1a (Adv-CPT-1a) or control adenoviruses encoding either beta-galactosidase (Adv-beta-gal) or carnitine palmitoyltransferase 2 (Adv-CPT-2). Overexpression of CPT-1a increased the rate of beta-oxidation and ketogenesis by approximately 70%, whereas esterification of exogenous fatty acids and de novo lipogenesis were unchanged. Importantly, CPT-1a overexpression was accompanied by a 35% reduction in TG accumulation and a 60% decrease in TG secretion by hepatocytes. There were no changes in secretion of apolipoprotein B (apoB), suggesting the synthesis of smaller, less atherogenic VLDL particles. To evaluate the effect of increasing hepatic CPT-1a activity in vivo, we injected lean or obese male rats with Adv-CPT-1a, Adv-beta-gal, or Adv-CPT-2. Hepatic CPT-1a activity was increased by approximately 46%, and the rate of fatty acid oxidation was increased by approximately 44% in lean and approximately 36% in obese CPT-1a-overexpressing animals compared with Adv-CPT-2- or Adv-beta-gal-treated rats. Similar to observations in vitro, liver TG content was reduced by approximately 37% (lean) and approximately 69% (obese) by this in vivo intervention. We conclude that a moderate stimulation of fatty acid oxidation achieved by an increase in CPT-1a activity is sufficient to substantially reduce hepatic TG accumulation both in vitro and in vivo. Therefore, interventions that increase CPT-1a activity could have potential benefits in the treatment of NAFLD.


PLOS ONE | 2011

Mice Lacking NKT Cells but with a Complete Complement of CD8+ T-Cells Are Not Protected against the Metabolic Abnormalities of Diet-Induced Obesity

Benjamin S. Mantell; Maja Stefanovic-Racic; Xiao Yang; Nikolas Dedousis; Ian Sipula; Robert M. O'Doherty

The contribution of natural killer T (NKT) cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d−/−), which lack NKT cells but have a full complement of CD8+ T-cells, and littermate wild type controls (WT) on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day), weight gain (21.8±1.8 vs 22.8±1.4 g) and fat mass (18.6±1.9 vs 19.5±2.1 g) were similar in CD1d−/− and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O2/g/h) and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min) were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α) induced by high fat feeding in CD1d−/− were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.


Diabetes | 2012

Dendritic Cells Promote Macrophage Infiltration and Comprise a Substantial Proportion of Obesity-Associated Increases in CD11c+ Cells in Adipose Tissue and Liver

Maja Stefanovic-Racic; Xiao Yang; Michael S. Turner; Benjamin S. Mantell; Donna B. Stolz; Tina L. Sumpter; Ian Sipula; Nikolaos Dedousis; Donald K. Scott; Penelope A. Morel; Angus W. Thomson; Robert M. O'Doherty

Obesity-associated increases in adipose tissue (AT) CD11c+ cells suggest that dendritic cells (DC), which are involved in the tissue recruitment and activation of macrophages, may play a role in determining AT and liver immunophenotype in obesity. This study addressed this hypothesis. With the use of flow cytometry, electron microscopy, and loss-and-gain of function approaches, the contribution of DC to the pattern of immune cell alterations and recruitment in obesity was assessed. In AT and liver there was a substantial, high-fat diet (HFD)–induced increase in DC. In AT, these increases were associated with crown-like structures, whereas in liver the increase in DC constituted an early and reversible response to diet. Notably, mice lacking DC had reduced AT and liver macrophages, whereas DC replacement in DC-null mice increased liver and AT macrophage populations. Furthermore, delivery of bone marrow–derived DC to lean wild-type mice increased AT and liver macrophage infiltration. Finally, mice lacking DC were resistant to the weight gain and metabolic abnormalities of an HFD. Together, these data demonstrate that DC are elevated in obesity, promote macrophage infiltration of AT and liver, contribute to the determination of tissue immunophenotype, and play a role in systemic metabolic responses to an HFD.


Molecular and Cellular Biology | 2014

Cholesterol Sulfate and Cholesterol Sulfotransferase Inhibit Gluconeogenesis by Targeting Hepatocyte Nuclear Factor 4α

Xiongjie Shi; Qiuqiong Cheng; Leyuan Xu; Jiong Yan; Mengxi Jiang; Jinhan He; Meishu Xu; Maja Stefanovic-Racic; Ian Sipula; Robert M. O'Doherty; Shunlin Ren; Wen Xie

ABSTRACT Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant. CS and SULT2B1b inhibited gluconeogenesis by targeting the gluconeogenic factor hepatocyte nuclear factor 4α (HNF4α) in both cell cultures and transgenic mice. Treatment of mice with CS or transgenic overexpression of the CS-generating enzyme SULT2B1b in the liver inhibited hepatic gluconeogenesis and alleviated metabolic abnormalities both in mice with diet-induced obesity (DIO) and in leptin-deficient (ob/ob) mice. Mechanistically, CS and SULT2B1b inhibited gluconeogenesis by suppressing the expression of acetyl coenzyme A (acetyl-CoA) synthetase (Acss), leading to decreased acetylation and nuclear exclusion of HNF4α. Our results also suggested that leptin is a potential effector of SULT2B1b in improving metabolic function. We conclude that SULT2B1b and its enzymatic by-product CS are important metabolic regulators that control glucose metabolism, suggesting CS as a potential therapeutic agent and SULT2B1b as a potential therapeutic target for metabolic disorders.


Oncotarget | 2016

Abnormal lipid processing but normal long-term repopulation potential of myc-/- hepatocytes

Lia R. Edmunds; P. Anthony Otero; Lokendra Sharma; Sonia D'Souza; James M. Dolezal; Sherin David; Jie Lu; Lauren Lamm; Mahesh K. Basantani; Pili Zhang; Ian Sipula; Lucy Li; Xuemei Zeng; Ying Ding; Fei Ding; Megan E. Beck; Jerry Vockley; Satdarshan P.S. Monga; Erin E. Kershaw; Robert M. O'Doherty; Lisa E. Kratz; Nathan A. Yates; Eric P. Goetzman; Donald K. Scott; Andrew W. Duncan; Edward V. Prochownik

Establishing c-Mycs (Myc) role in liver regeneration has proven difficult particularly since the traditional model of partial hepatectomy may provoke an insufficiently demanding proliferative stress. We used a model of hereditary tyrosinemia whereby the affected parenchyma can be gradually replaced by transplanted hepatocytes, which replicate 50-100-fold, over several months. Prior to transplantation, livers from myc−/− (KO) mice were smaller in young animals and larger in older animals relative to myc+/+ (WT) counterparts. KO mice also consumed more oxygen, produced more CO2 and generated more heat. Although WT and KO hepatocytes showed few mitochondrial structural differences, the latter demonstrated defective electron transport chain function. RNAseq revealed differences in transcripts encoding ribosomal subunits, cytochrome p450 members and enzymes for triglyceride and sterol biosynthesis. KO hepatocytes also accumulated neutral lipids. WT and KO hepatocytes repopulated recipient tyrosinemic livers equally well although the latter were associated with a pro-inflammatory hepatic environment that correlated with worsening lipid accumulation, its extracellular deposition and parenchymal oxidative damage. Our results show Myc to be dispensable for sustained in vivo hepatocyte proliferation but necessary for maintaining normal lipid homeostasis. myc−/− livers resemble those encountered in non-alcoholic fatty liver disease and, under sustained proliferative stress, gradually acquire the features of non-alcoholic steatohepatitis.


Molecular metabolism | 2017

DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

Pili Zhang; Tianjiao Chu; Nikolas Dedousis; Benjamin S. Mantell; Ian Sipula; Lucy Li; Kimberly Bunce; Patricia Shaw; Liora S. Katz; Jun Zhu; Carmen A. Argmann; Robert M. O'Doherty; David G. Peters; Donald K. Scott

Objective Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity.


Physiological Reports | 2016

Similar degrees of obesity induced by diet or aging cause strikingly different immunologic and metabolic outcomes

Kanthi B. Krishna; Maja Stefanovic-Racic; Nikolaos Dedousis; Ian Sipula; Robert M. O'Doherty

In obesity, adipose tissue (AT) and liver are infiltrated with Th‐1 polarized immune cells, which are proposed to play an important role in the pathogenesis of the metabolic abnormalities of obesity. Aging is also associated with increased adiposity, but the effects of this increase on inflammation and associated metabolic dysfunction are poorly understood. To address this issue, we assessed insulin resistance (IR) and AT and liver immunophenotype in aged, lean (AL) and aged, obese (AO) mice, all of whom were maintained on a standard chow diet (11% fat diet) throughout their lives. For comparison, these variables were also assessed in young, lean (YL) and young diet‐induced obese mice (41% fat diet, YO). Despite similar body weight and fat accumulation, YO mice were substantially more IR and had greater liver steatosis compared to AO mice. YO also had elevated infiltration of macrophages/dendritic cells in AT and liver, but these increases were absent in AO. Furthermore, liver immune cells of YO were more Th‐1 polarized then AO. Notably, aging was associated with accumulation of T cells, but this occurred independent of obesity. Together, the data suggest that reduced inflammation in AO underlies the improved insulin sensitivity and lowered steatosis compared to YO.


American Journal of Physiology-endocrinology and Metabolism | 2018

Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice

Dionysios V. Chartoumpekis; Dushani L. Palliyaguru; Nobunao Wakabayashi; Marco Fazzari; Nicholas K.H. Khoo; Francisco J. Schopfer; Ian Sipula; Yoko Yagishita; George K. Michalopoulos; Robert M. O'Doherty; Thomas W. Kensler

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a canonical regulator of cytoprotective gene expression, but evidence of its cross talk with other pathways, including metabolic ones, is ever increasing. Pharmacologic or systemic genetic activation of the Nrf2 pathway partially protects from obesity in mice and ameliorates fasting hyperglycemia in mice and humans. However, systemic Nrf2 deletion also protects from diet-induced obesity and insulin resistance in mice. To further investigate the effect of the disruption of Nrf2 on obesity in a tissue-specific manner, we focused on adipocytes and hepatocytes with targeted deletion of Nrf2. To this end, mice with cell-specific deletion of Nrf2 in adipocytes (ANKO) or hepatocytes (HeNKO) were fed a high-fat diet (HFD) for 6 mo and showed similar increases in body weight and body fat content. ANKO mice showed a partially deteriorated glucose tolerance, higher fasting glucose levels, and higher levels of cholesterol and nonesterified fatty acids compared with their Control counterparts. The HeNKO mice, though, had lower insulin levels and trended toward improved insulin sensitivity without having any difference in liver triglyceride accumulation. This study compared for the first time two conditional Nrf2 knockout models in adipocytes and in hepatocytes during HFD-induced obesity. None of these models could completely recapitulate the unexpected protection against obesity observed in the whole body Nrf2 knockout mice, but this study points out the differential roles that Nrf2 may play, beyond cytoprotection, in different target tissues and rather suggests systemic activation of the Nrf2 pathway as an effective means of prevention and treatment of obesity and type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2017

Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism

Anantha S. Metlakunta; Wan Huang; Maja Stefanovic-Racic; Nikolaos Dedousis; Ian Sipula; Robert M. O’Doherty

Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects. Myeloid cell-specific deletion of the leptin receptor (ObR) in mice or depletion of liver Kupffer cells (KC) in rats in vivo prevented the acute effects of leptin on liver lipid metabolism, while the metabolic effects of leptin were maintained in mice lacking ObR in hepatocytes. Notably, liver TG were elevated in both lean and obese myeloid cell ObR, but the degree of obesity and insulin resistance induced by a high-fat diet was similar to control mice. In isolated primary hepatocytes (HEP), leptin had no effects on HEP lipid metabolism and only weakly stimulated PI3K. However, the coculture of KC with HEP restored leptin action on HEP fatty acid metabolism and stimulation of HEP PI3K. Notably, leptin stimulated the release from KC of a number of cytokines. However, the exposure of HEP to these cytokines individually [granulocyte macrophage colony-stimulating factor, IL-1α, IL-1β, IL-6, IL-10, and IL-18] or in combination had no effects on HEP lipid metabolism. Together, these data demonstrate a role for liver mononuclear cells in the regulation of liver lipid metabolism by leptin.

Collaboration


Dive into the Ian Sipula's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald K. Scott

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pili Zhang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge