Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Tizard is active.

Publication


Featured researches published by Ian Tizard.


Vaccine | 2001

Plant-based vaccines: unique advantages

Stephen J. Streatfield; Joseph M. Jilka; Elizabeth E. Hood; Debra Turner; Michele Bailey; Jocelyne M. Mayor; Susan L. Woodard; Katherine K. Beifuss; Michael E. Horn; Donna E. Delaney; Ian Tizard; John A. Howard

Abstract Numerous studies have shown that viral epitopes and subunits of bacterial toxins can be expressed and correctly processed in transgenic plants. The recombinant proteins induce immune responses and have several benefits over current vaccine technologies, including increased safety, economy, stability, versatility and efficacy. Antigens expressed in corn are particularly advantageous since the seed can be produced in vast quantities and shipped over long distances at ambient temperature, potentially allowing global vaccination. We have expressed the B-subunit of Escherichia coli heat-labile enterotoxin and the spike protein of swine transmissible gastroenteritis virus at high levels in corn, and demonstrate that these antigens delivered in the seed elicit protective immune responses.


Immunopharmacology | 1996

Activation of a mouse macrophage cell line by acemannan: The major carbohydrate fraction from Aloe vera gel

Linna Zhang; Ian Tizard

Acemannan is the name given to the major carbohydrate fraction obtained from the gel of the Aloe vera leaf. It has been claimed to have several important therapeutic properties including acceleration of wound healing, immune stimulation, anti-cancer and anti-viral effects. However, the biological mechanisms of these activities are unclear. Because of this wide diversity of effects, it is believed that they may be exerted through pluripotent effector cells such as macrophages. The effects of acemannan on the mouse macrophage cell line, RAW 264.7 cells were therefore investigated. It was found that acemannan could stimulate macrophage cytokine production, nitric oxide release, surface molecule expression, and cell morphologic changes. The production of the cytokines IL-6 and TNF-alpha were dependent on the dose of acemannan provided. Nitric oxide production, cell morphologic changes and surface antigen expression were increased in response to stimulation by a mixture of acemannan and IFN-gamma. These results suggest that acemannan may function, at least in part, through macrophage activation.


Journal of Controlled Release | 2002

Delivery of subunit vaccines in maize seed

Barry J. Lamphear; Stephen J. Streatfield; Joseph M. Jilka; Christopher A. Brooks; Donna K. Barker; Debra Turner; Donna E. Delaney; Martin Garcia; Barry Wiggins; Susan L. Woodard; Elizabeth E. Hood; Ian Tizard; Bruce Lawhorn; John A. Howard

Abstract The use of recombinant gene technologies by the vaccine industry has revolutionized the way antigens are generated, and has provided safer, more effective means of protecting animals and humans against bacterial and viral pathogens. Viral and bacterial antigens for recombinant subunit vaccines have been produced in a variety of organisms. Transgenic plants are now recognized as legitimate sources for these proteins, especially in the developing area of oral vaccines, because antigens have been shown to be correctly processed in plants into forms that elicit immune responses when fed to animals or humans. Antigens expressed in maize (Zea mays) are particularly attractive since they can be deposited in the natural storage vessel, the corn seed, and can be conveniently delivered to any organism that consumes grain. We have previously demonstrated high level expression of the B-subunit of Escherichia coli heat-labile enterotoxin and the spike protein of swine transmissible gastroenteritis in corn, and have demonstrated that these antigens delivered in the seed elicit protective immune responses. Here we provide additional data to support the potency, efficacy, and stability of recombinant subunit vaccines delivered in maize seed.


Toxicology | 1987

Aroclor 1254 as a 2,3,7,8-tetrachlorodibenzo-p-dioxin antagonist: Effects on enzyme induction and immunotoxicity

R. Bannister; D. Davis; T. Zacharewski; Ian Tizard; Stephen Safe

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Aroclor 1254 induced the cytochrome P-450 dependent monooxygenases, aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) in rat hepatoma H-4-II E cells and C57BL/6J mice. It has been proposed that both Aroclor 1254 and 2,3,7,8-TCDD induce these enzymes via a common mechanism which features initial binding to the aryl hydrocarbon (Ah) cytosolic receptor protein. The major difference between these compounds was the relative potency (i.e. 2,3,7,8-TCDD much greater than Aroclor 1254). Cotreatment of rat hepatoma H-4-II E cells or C57BL/6J mice with a dose of 2,3,7,8-TCDD which submaximally induces AHH and EROD and a dose of Aroclor 1254 which exhibited little or no induction activity resulted in significant antagonism of the induction effects of 2,3,7,8-TCDD. For example, cotreatment of C57BL/6J mice with 2,3,7,8-TCDD (15 nmol/kg) and Aroclor 1254 (25, 75 and 150 mumol/kg) resulted in up to 23% antagonism of AHH induction by 2,3,7,8-TCDD. Moreover, cotreatment with a higher dose of the 2,3,7,8-TCDD agonist (30 or 50 nmol/kg) partially reversed some of the antagonism by Aroclor 1254. In vivo antagonism was observed only at Aroclor 1254/2,3,7,8-TCDD molar ratios of 1667:1, 5000:1 and 10,000:1. Administration of 2,3,7,8-TCDD (3.72 nmol/kg) to C57BL/6J mice resulted in a 76% decrease in the splenic plaque forming cell response to sheep red blood cells. This T-cell mediated immunotoxic effect of 2,3,7,8-TCDD segregates with the Ah locus. In contrast, administration of 5, 15, 75 and 150 mumol/kg of Aroclor 1254 resulted in impairment of the immune response only at the highest dose level. However, cotreatment of mice with 2,3,7,8-TCDD (3.72 nmol/kg) and Aroclor 1254 (5, 15 or 75 mumol/kg) resulted in no significant decrease in the plaque forming cell response and complete protection from the immunotoxicity of 2,3,7,8-TCDD. Cotreatment of the mice with Aroclor 1254 (75 mumol/kg) and a higher dose of the 2,3,7,8-TCDD agonist resulted in partial reversal of the protective effects of Aroclor 1254. The in vitro and in vivo data suggest that within specific antagonist/agonist dose ratios, Aroclor 1254 can antagonize at least 2 Ah receptor-mediated effects of 2,3,7,8-TCDD, namely AHH induction and immunotoxicity.


Emerging Infectious Diseases | 2010

Use of avian bornavirus isolates to induce proventricular dilatation disease in conures

Patricia L. Gray; Sharman Hoppes; Paulette F. Suchodolski; Negin Mirhosseini; Susan Payne; Itamar Villanueva; H. L. Shivaprasad; Kirsi S. Honkavuori; Thomas Briese; Sanjay M. Reddy; Ian Tizard

The fulfillment of Koch’s postulates shows that the virus causes proventricular dilatation disease in parrots.


Vaccine | 2011

Intranasal delivery of Norwalk virus-like particles formulated in an in-situ gelling, dry powder vaccine

Lissette S. Velasquez; Samantha Shira; Alice N. Berta; Jacquelyn Kilbourne; Babu M. Medi; Ian Tizard; Yawei Ni; Charles J. Arntzen; Melissa M. Herbst-Kralovetz

The development of a vaccine to prevent norovirus infections has been focused on immunization at a mucosal surface, but has been limited by the low immunogenicity of self-assembling Norwalk virus-like particles (NV VLPs) delivered enterically or at nasal surfaces. Nasal immunization, which offers the advantage of ease of immunization, faces obstacles imposed by the normal process of mucociliary clearance, which limits residence time of applied antigens. Herein, we describe the use of a dry powder formulation (GelVac) of an inert in situ gelling polysaccharide (GelSite) extracted from Aloe vera for nasal delivery of NV VLP antigen. Powder formulations, with or without NV VLP antigen, were similar in structure in dry form or when rehydrated in simulated nasal fluids. Immunogenicity of the dry powder VLP formulation was compared to equivalent antigen/adjuvant liquid formulations in animals. For the GelVac powder, we observed superior NV-specific serum and mucosal (aerodigestive and reproductive tracts) antibody responses relative to liquid formulations. Incorporation of the TLR7 agonist gardiquimod in dry powder formulations did not enhance antibody responses, although its inclusion in liquid formulations did enhance VLP immunogenicity irrespective of the presence or absence of GelSite. We interpret these data as showing that GelSite-based dry powder formulations (1) stabilize the immunogenic structural properties of VLPs and (2) induce systemic and mucosal antibody titers which are equal or greater than those achieved by VLPs plus adjuvant in a liquid formulation. We conclude that in situ gelation of the GelVac dry powder formulation at nasal mucosal surfaces delays mucociliary clearance and thereby prolongs VLP antigen exposure to immune effector sites.


Veterinary Immunology and Immunopathology | 1996

Lectin-carbohydrate interaction in the immune system

Y. Ni; Ian Tizard

The immune system consists of various types of cells and molecules that specifically interact with each other to initiate the host defense mechanism. Recent studies have shown that carbohydrates and lectins (carbohydrate-binding proteins) play an essential role in mediating such interactions. Both lectins and carbohydrates are widely distributed in the mammalian tissues as well as in microorganisms. Carbohydrates, due to their chemical nature, can potentially form structures that are more variable than proteins and nucleic acids. Lectins can exist in either soluble or cell-associated form, and although overall structures vary, invariably possess carbohydrate-recognition domains (CRD) with various specificities. The interaction between lectins and carbohydrates have been shown to be involved in such activities as opsonization of microorganisms, phagocytosis, cell adhesion and migration, cell activation and differentiation, and apoptosis. The number of lectins identified in the immune system is increasing at a rapid pace. The development in this area has opened a new aspect in studying the immune system, and at the same time, provided new therapeutic routes for the treatment and prevention of disease.


Veterinary Microbiology | 2010

Molecular characterization of the cloacal microbiota of wild and captive parrots.

Panagiotis G. Xenoulis; Patricia L. Gray; Donald J. Brightsmith; Blake Palculict; Sharman Hoppes; Jörg M. Steiner; Ian Tizard; Jan S. Suchodolski

The gastrointestinal microbiota plays a fundamental role in health and disease. Only limited data are available about the composition of the intestinal microbiota of captive animals compared to those of wild animals. The aim of the present study was to characterize the cloacal microbiota of apparently healthy wild and captive parrots. A total of 16 parrots, 8 wild and 8 captive, belonging to 3 different species, were used in this study. Cloacal material was collected via cloacal swabbing. DNA was extracted and 16S rRNA genes were amplified using universal bacterial primers. Constructed 16S rRNA gene clone libraries were compared between groups. A total of 518 clones were analyzed, and 49 operational taxonomic units (OTUs) were identified. The OTUs were classified in 4 bacterial phyla: Firmicutes (72.9%), Proteobacteria (14.9%), Actinobacteria (12%), and Bacteroidetes (0.2%). Bacterial diversity was significantly lower in wild birds than in captive birds. Principal component analysis based on the Unifrac distance metric indicated that the cloacal microbiota differed between wild and captive parrots. Staphylococcus saprophyticus was significantly more abundant in wild birds, while Escherichia coli was significantly more abundant in captive birds. In conclusion, wild and captive parrots appear to have differences in the composition of their cloacal bacterial microbiota. The clinical significance of these differences remains to be determined.


Animal Health Research Reviews | 2008

Sickness behavior, its mechanisms and significance.

Ian Tizard

Abstract Recent studies have begun to clarify the pathogenesis of sickness behavior. Cytokines released by macrophages, dendritic cells and mast cells act on the brain to trigger behavioral changes in infected animals. The major cytokines, interleukin-1, tumor necrosis factor alpha, and others, all act on the hypothalamus to provoke alterations in the normal homeostatic condition. These include elevated body temperature, increased sleep, and loss of appetite as well as major alterations in lipid and protein metabolism leading to significant weight loss. Some of these changes are clearly directed towards enhancing the normal immune responses. The benefits of others such as appetite loss are unclear. It is also important to recognize that other animals may recognize sickness behavior as a sign of weakness and mark the victim out for targeting by predators. As a result, some prey species may work very hard to mask their sickness, a response that serves to complicate veterinary diagnosis.


Vaccine | 1992

Antigen dependent adjuvant activity of a polydispersed β-(1,4)-linked acetylated mannan (acemannan)

Anthony D. Chinnah; Mirza A. Baig; Ian Tizard; Maurice Clarence Kemp

The adjuvant properties of a polydispersed beta-(1,4)-linked acetylated mannan, acemannan (ACE-M), were evaluated. Day-old broiler chicks were randomly selected and allocated to four flocks (Vac 1-4). The Vac 1 flock was sham vaccinated with saline. The Vac 2 flock was vaccinated with an oil-based vaccine (Breedervac III; Newcastle disease virus (NDV), infectious bursal disease virus (IBDV) and infectious bronchitis virus). The Vac 3 flock was vaccinated with a vaccine-ACE-M mixture, and the Vac 4 flock was vaccinated with vaccine and ACE-M at separate anatomical sites. ELISA titres to NDV and IBDV were determined. The immune response to NDV at 21 days postvaccination (PV) was significantly enhanced (P less than or equal to 0.05) by the addition of ACE-M to the vaccine, compared with vaccination without ACE-M. Subsequently, the vaccine-ACE-M mixture appeared to suppress the immune response to NDV. However, at day 35 PV, 95% of the Vac 3 chicks compared with 90% of the Vac 2 and 89% of the Vac 4 chicks exhibited protective titres. The response to IBDV differed from that to NDV. At day 21 PV the immune response to IBDV was essentially the same for all flocks that received vaccine, i.e. addition of ACE-M to the vaccine did not significantly enhance the immune response; however, it did significantly (P less than or equal to 0.05) sustain the immune response at days 28 and 35. In addition to the observed effect on titres to NDV and IBDV, ACE-M also had an effect on flock immunity.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Ian Tizard's collaboration.

Researchain Logo
Decentralizing Knowledge