Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian Toma is active.

Publication


Featured researches published by Ian Toma.


Cell and Tissue Research | 2012

Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects

Ian Toma; Timothy A. McCaffrey

Age-related progression of cardiovascular disease is by far the largest health problem in the US and involves vascular damage, progressive vascular fibrosis and the accumulation of lipid-rich atherosclerotic lesions. Advanced lesions can restrict flow to key organs and can trigger occlusive thrombosis resulting in a stroke or myocardial infarction. Transforming growth factor-beta (TGF-β) is a major orchestrator of the fibroproliferative response to tissue damage. In the early stages of repair, TGF-β is released from platelets and activated from matrix reservoirs; it then stimulates the chemotaxis of repair cells, modulates immunity and inflammation and induces matrix production. At later stages, it negatively regulates fibrosis through its strong antiproliferative and apoptotic effects on fibrotic cells. In advanced lesions, TGF-β might be important in arterial calcification, commonly referred to as “hardening of the arteries”. Because TGF-β can signal through multiple pathways, namely the SMADs, a MAPK pathway and the Rho/ROCK pathways, selective defects in TGF-β signaling can disrupt otherwise coordinated pathways of tissue regeneration. TGF-β is known to control cell proliferation, cell migration, matrix synthesis, wound contraction, calcification and the immune response, all being major components of the atherosclerotic process. However, many of the effects of TGF-β are essential to normal tissue repair and thus, TGF-β is often thought to be “atheroprotective”. The present review attempts to parse systematically the known effects of TGF-β on both the major risk factors for atherosclerosis and to isolate the role of TGF-β in the many component pathways involved in atherogenesis.


Journal of Biological Chemistry | 2011

Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells.

Siqin Zhaorigetu; Zhaoqing Yang; Ian Toma; Timothy A. McCaffrey; Chien-An Andy Hu

Inflammatory cytokine-regulated apoptosis and autophagy play pivotal roles in plaque rupture and thrombosis of atherosclerotic lesions. However, the molecular interplay between apoptosis and autophagy in vascular cells has not been investigated. Our prior study showed that human apolipoprotein L6 (ApoL6), a pro-apoptotic BH3-only member of the Bcl-2 family, was one of the downstream targets of interferon-γ (INFγ), which sensitizes atherosclerotic lesion-derived cells (LDCs) to Fas-induced apoptosis. To investigate whether ApoL6 plays a causal role in atherosclerotic apoptosis and autophagy, in this study, we demonstrate that IFNγ treatment itself strongly induces ApoL6, and ApoL6 is highly expressed and partially co-localized with activated caspase 3 in activated smooth muscle cells in atherosclerotic lesions. In addition, overexpression of ApoL6 promotes reactive oxygen species (ROS) generation, caspase activation, and subsequent apoptosis, which can be blocked by pan caspase inhibitor and ROS scavenger. Knockdown of ApoL6 expression by siApoL6 suppresses INFγ- and Fas-mediated apoptosis. Further, ApoL6 binds Bcl-XL, one of the most abundant anti-death proteins in LDCs. Interestingly, forced ApoL6 expression in LDCs induces degradation of Beclin 1, accumulation of p62, and subsequent attenuation of LC3-II formation and translocation and thus autophagy, whereas siApoL6 treatment reverts the phenotype. Taken together, our results suggest that ApoL6 regulates both apoptosis and autophagy in SMCs. IFNγ-initiated, ApoL6-induced apoptosis in vascular cells may be an important factor causing plaque instability and a potential therapeutic target for treating atherosclerosis and cardiovascular disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Cardiovascular Inflammation and Lesion Cell Apoptosis A Novel Connection via the Interferon-Inducible Immunoproteasome

Zhaoqing Yang; Dmitry Gagarin; Georges St. Laurent; Neil Hammell; Ian Toma; Chien-an Hu; Ayaka Iwasa; Timothy A. McCaffrey

Objective—Increasing evidence suggests that chronic inflammation contributes to atherogenesis, and that acute inflammatory events cause plaque rupture, thrombosis, and myocardial infarction. The present studies examined how inflammatory factors, such as interferon-γ (IFNγ), cause increased sensitivity to apoptosis in vascular lesion cells. Methods and Results—Cells from the fibrous cap of human atherosclerotic lesions were sensitized by interferon-γ (IFNγ) to Fas-induced apoptosis, in a Bcl-XL reversible manner. Microarray profiling identified 72 INFγ-induced transcripts with potential relevance to apoptosis. Half could be excluded because they were induced by IRF-1 overexpression, which did not sensitize to apoptosis. IFNγ treatment strongly reduced Mcl-1, phospho-Bcl-2 (ser70), and phospho-Bcl-XL (ser62) protein levels. Candidate transcripts were modulated by siRNA, overexpression, or inhibitors to assess the effect on IFNγ-induced Fas sensitivity. Surprisingly, siRNA knockdown of PSMB8 (LMP7), an “immunoproteasome” component, reversed IFNγ-induced sensitivity to Fas ligation and prevented Fas/IFNγ-induced degradation of Mcl-1, but did not protect p-Bcl-2 or p-Bcl-XL. Proteasome inhibition markedly increased Mcl-1, p-Bcl-2, and p-Bcl-XL levels after IFNγ treatment. Conclusions—Although critical for antigen presentation, the immunoproteasome appears to be a key link between inflammatory factors and the control of vascular cell apoptosis and may thus be an important factor in plaque rupture and myocardial infarction.


BMC Bioinformatics | 2014

Clinical PathoScope: rapid alignment and filtration for accurate pathogen identification in clinical samples using unassembled sequencing data

Allyson L. Byrd; Joseph Perez-Rogers; Solaiappan Manimaran; Eduardo Castro-Nallar; Ian Toma; Timothy A. McCaffrey; Marc O. Siegel; Gary Benson; Keith A. Crandall; William Evan Johnson

BackgroundThe use of sequencing technologies to investigate the microbiome of a sample can positively impact patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples contain genomic sequences from various sources that complicate the identification of pathogens.ResultsHere we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification using a computational subtraction methodology in concordance with read trimming and ambiguous read reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical PathoScope outperforms previously published pathogen identification methods with regard to computational speed, sensitivity, and specificity.ConclusionsClinical PathoScope is the only pathogen identification method currently available that can identify multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.


Journal of Clinical Microbiology | 2014

Single-Molecule Long-Read 16S Sequencing To Characterize the Lung Microbiome from Mechanically Ventilated Patients with Suspected Pneumonia

Ian Toma; Marc O. Siegel; John Keiser; Anna Yakovleva; Alvin Kim; Lionel Davenport; Joseph M. Devaney; Eric P. Hoffman; Rami Alsubail; Keith A. Crandall; Eduardo Castro-Nallar; Marcos Pérez-Losada; Sarah K. Hilton; Lakhmir S. Chawla; Timothy A. McCaffrey; Gary L. Simon

ABSTRACT In critically ill patients, the development of pneumonia results in significant morbidity and mortality and additional health care costs. The accurate and rapid identification of the microbial pathogens in patients with pulmonary infections might lead to targeted antimicrobial therapy with potentially fewer adverse effects and lower costs. Major advances in next-generation sequencing (NGS) allow culture-independent identification of pathogens. The present study used NGS of essentially full-length PCR-amplified 16S ribosomal DNA from the bronchial aspirates of intubated patients with suspected pneumonia. The results from 61 patients demonstrated that sufficient DNA was obtained from 72% of samples, 44% of which (27 samples) yielded PCR amplimers suitable for NGS. Out of the 27 sequenced samples, only 20 had bacterial culture growth, while the microbiological and NGS identification of bacteria coincided in 17 (85%) of these samples. Despite the lack of bacterial growth in 7 samples that yielded amplimers and were sequenced, the NGS identified a number of bacterial species in these samples. Overall, a significant diversity of bacterial species was identified from the same genus as the predominant cultured pathogens. The numbers of NGS-identifiable bacterial genera were consistently higher than identified by standard microbiological methods. As technical advances reduce the processing and sequencing times, NGS-based methods will ultimately be able to provide clinicians with rapid, precise, culture-independent identification of bacterial, fungal, and viral pathogens and their antimicrobial sensitivity profiles.


Frontiers in Microbiology | 2016

Metataxonomic and Metagenomic Approaches vs. Culture-Based Techniques for Clinical Pathology.

Sarah K. Hilton; Eduardo Castro-Nallar; Marcos Pérez-Losada; Ian Toma; Timothy A. McCaffrey; Eric P. Hoffman; Marc O. Siegel; Gary L. Simon; W. Evan Johnson; Keith A. Crandall

Diagnoses that are both timely and accurate are critically important for patients with life-threatening or drug resistant infections. Technological improvements in High-Throughput Sequencing (HTS) have led to its use in pathogen detection and its application in clinical diagnoses of infectious diseases. The present study compares two HTS methods, 16S rRNA marker gene sequencing (metataxonomics) and whole metagenomic shotgun sequencing (metagenomics), in their respective abilities to match the same diagnosis as traditional culture methods (culture inference) for patients with ventilator associated pneumonia (VAP). The metagenomic analysis was able to produce the same diagnosis as culture methods at the species-level for five of the six samples, while the metataxonomic analysis was only able to produce results with the same species-level identification as culture for two of the six samples. These results indicate that metagenomic analyses have the accuracy needed for a clinical diagnostic tool, but full integration in diagnostic protocols is contingent on technological improvements to decrease turnaround time and lower costs.


International Journal of Biological Sciences | 2013

Genomic Profiling Reveals the Potential Role of TCL1A and MDR1 Deficiency in Chemotherapy-Induced Cardiotoxicity

Timothy A. McCaffrey; Constantine Tziros; Jannet F. Lewis; Richard J. Katz; Robert J. Siegel; William B. Weglicki; Jay H. Kramer; I. Tong Mak; Ian Toma; Liang Chen; Elizabeth Benas; Alexander Lowitt; Shruti Rao; Linda Witkin; Yi Lian; Yinglei Lai; Zhaoqing Yang; Sidney W. Fu

Background: Anthracyclines, such as doxorubicin (Adriamycin), are highly effective chemotherapeutic agents, but are well known to cause myocardial dysfunction and life-threatening congestive heart failure (CHF) in some patients. Methods: To generate new hypotheses about its etiology, genome-wide transcript analysis was performed on whole blood RNA from women that received doxorubicin-based chemotherapy and either did, or did not develop CHF, as defined by ejection fractions (EF)≤40%. Women with non-ischemic cardiomyopathy unrelated to chemotherapy were compared to breast cancer patients prior to chemo with normal EF to identify heart failure-related transcripts in women not receiving chemotherapy. Byproducts of oxidative stress in plasma were measured in a subset of patients. Results: The results indicate that patients treated with doxorubicin showed sustained elevations in oxidative byproducts in plasma. At the RNA level, women who exhibited low EFs after chemotherapy had 260 transcripts that differed >2-fold (p<0.05) compared to women who received chemo but maintained normal EFs. Most of these transcripts (201) were not altered in non-chemotherapy patients with low EFs. Pathway analysis of the differentially expressed genes indicated enrichment in apoptosis-related transcripts. Notably, women with chemo-induced low EFs had a 4.8-fold decrease in T-cell leukemia/lymphoma 1A (TCL1A) transcripts. TCL1A is expressed in both cardiac and skeletal muscle, and is a known co-activator for AKT, one of the major pro-survival factors for cardiomyocytes. Further, women who developed low EFs had a 2-fold lower level of ABCB1 transcript, encoding the multidrug resistance protein 1 (MDR1), which is an efflux pump for doxorubicin, potentially leading to higher cardiac levels of drug. In vitro studies confirmed that inhibition of MDR1 by verapamil in rat H9C2 cardiomyocytes increased their susceptibility to doxorubicin-induced toxicity. Conclusions: It is proposed that chemo-induced cardiomyopathy may be due to a reduction in TCL1A levels, thereby causing increased apoptotic sensitivity, and leading to reduced cardiac MDR1 levels, causing higher cardiac levels of doxorubicin and intracellular free radicals. If so, screening for TCL1A and MDR1 SNPs or expression level in blood, might identify women at greatest risk of chemo-induced heart failure.


Molecular Cancer Research | 2011

Apoptotic Role of IKK in T-ALL Therapeutic Response

Irene Riz; Lynnsey A. Zweier-Renn; Ian Toma; Teresa S. Hawley; Robert G. Hawley

Despite considerable progress in the treatment of T cell acute lymphoblastic leukemia (T-ALL), it is still the highest risk malignancy among ALL. The outcome of relapsed patients remains dismal. The pro-survival role of NOTCH1 and NFκB in T-ALL is well documented; also, both factors were reported to be predictive of relapse. The NOTCH1 signaling pathway, commonly activated in T-ALL, was shown to enhance the transcriptional function of NFκB via several mechanisms. Thus, pharmacological inhibition of NOTCH1-NFκB signaling was suggested to be incorporated into existing T-ALL treatment protocols. However, conventional chemotherapy is based on activation of various types of stress, such as DNA damage, mitotic perturbations or endoplasmic reticulum overload. NFκB is frequently activated in response to stress and, depending on yet unknown mechanisms, it either protects cells from the drug action or mediates apoptosis. Here, we report that T-ALL cells respond to NFκB inhibition in opposite ways depending on whether they were treated with a stress-inducing chemotherapeutic agent or not. Moreover, we found that NOTCH1 enhances NFκB apoptotic function in the stressed cells. The data argue for further studies of NFκB status in T-ALL patients on different treatment protocols and the impact of activating NOTCH1 mutations on treatment response. Mol Cancer Res; 9(8); 979–84. ©2011 AACR.


Personalized Medicine | 2014

Engaging the next generation of healthcare professionals in genomics: planning for the future

Shawneequa L. Callier; Ian Toma; Timothy A. McCaffrey; Arthur F Harralson; Travis J O’Brien

There is broad agreement that healthcare professionals require fundamental training in genomics to keep pace with scientific advancement. Strong models that promote effective genomic education, however, are lacking. Furthermore, curricula at many institutions are now straining to adapt to the integration of additional material on next-generation sequencing and the bioethical and legal issues that will accompany clinical genomic testing. This article advocates for core competencies focused on job function, which will best prepare providers to be end-users of healthcare information. In addition, it argues in favor of online and blended learning models that incorporate student genotyping and specific training in the ethical, legal and social issues raised by genomic testing.


BMC Medical Genomics | 2016

Acute appendicitis: transcript profiling of blood identifies promising biomarkers and potential underlying processes

Lakhmir S. Chawla; Ian Toma; Danielle L. Davison; Khashayar Vaziri; Juliet Lee; Raymond Lucas; Michael G. Seneff; Aobhinn Nyhan; Timothy A. McCaffrey

BackgroundThe diagnosis of acute appendicitis can be surprisingly difficult without computed tomography, which carries significant radiation exposure. Circulating blood cells may carry informative changes in their RNA expression profile that would signal internal infection or inflammation of the appendix.MethodsGenome-wide expression profiling was applied to whole blood RNA of acute appendicitis patients versus patients with other abdominal disorders, in order to identify biomarkers of appendicitis. From a large cohort of emergency patients, a discovery set of patients with surgically confirmed appendicitis, or abdominal pain from other causes, was identified. RNA from whole blood was profiled by microarrays, and RNA levels were filtered by a combined fold-change (>2) and p value (<0.05). A separate set of patients, including patients with respiratory infections, was used to validate a partial least squares discriminant (PLSD) prediction model.ResultsTranscript profiling identified 37 differentially expressed genes (DEG) in appendicitis versus abdominal pain patients. The DEG list contained 3 major ontologies: infection-related, inflammation-related, and ribosomal processing. Appendicitis patients had lower level of neutrophil defensin mRNA (DEFA1,3), but higher levels of alkaline phosphatase (ALPL) and interleukin-8 receptor-ß (CXCR2/IL8RB), which was confirmed in a larger cohort of 60 patients using droplet digital PCR (ddPCR).ConclusionsPatients with acute appendicitis have detectable changes in the mRNA expression levels of factors related to neutrophil innate defense systems. The low defensin mRNA levels suggest that appendicitis patient’s immune cells are not directly activated by pathogens, but are primed by diffusible factors in the microenvironment of the infection. The detected biomarkers are consistent with prior evidence that biofilm-forming bacteria in the appendix may be an important factor in appendicitis.

Collaboration


Dive into the Ian Toma's collaboration.

Top Co-Authors

Avatar

Timothy A. McCaffrey

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Richard J. Katz

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Zhaoqing Yang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith A. Crandall

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Marc O. Siegel

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Ramesh Mazhari

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Sidney W. Fu

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Constantine Tziros

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eric P. Hoffman

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge