Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ianko Iankov is active.

Publication


Featured researches published by Ianko Iankov.


The Prostate | 2009

Engineered Measles Virus as a Novel Oncolytic Therapy Against Prostate Cancer

Pavlos Msaouel; Ianko Iankov; Cory Allen; John C. Morris; Veronika von Messling; Roberto Cattaneo; Michael Koutsilieris; Stephen J. Russell; Evanthia Galanis

No curative therapy is currently available for locally advanced or metastatic prostate cancer. Oncolytic viruses represent a novel class of therapeutic agents that demonstrates no cross‐resistance with existing approaches and can therefore be combined with conventional treatment modalities. Measles virus strains deriving from the Edmonston (MV‐Edm) vaccine strain have shown considerable oncolytic activity against a variety of solid tumers and hematologic malignancies. In this study, we investigated the antitumor potential of recombinant MV‐Edm derivatives as novel oncolytic agents against prostate cancer.


Molecular Therapy | 2009

Noninvasive Imaging and Radiovirotherapy of Prostate Cancer Using an Oncolytic Measles Virus Expressing the Sodium Iodide Symporter

Pavlos Msaouel; Ianko Iankov; Cory Allen; Ileana Aderca; Mark J. Federspiel; Donald J. Tindall; John C. Morris; Michael Koutsilieris; Stephen J. Russell; Evanthia Galanis

Prostate cancer cells overexpress the measles virus (MV) receptor CD46. Herein, we evaluated the antitumor activity of an oncolytic derivative of the MV Edmonston (MV-Edm) vaccine strain engineered to express the human sodium iodide symporter (NIS; MV-NIS virus). MV-NIS showed significant cytopathic effect (CPE) against prostate cancer cell lines in vitro. Infected cells effectively concentrated radioiodide isotopes as measured in vitro by Iodide-125 ((125)I) uptake assays. Virus localization and spread in vivo could be effectively followed by imaging of (123)I uptake. In vivo administration of MV-NIS either locally or systemically (total dose of 9 x 10(6) TCID(50)) resulted in significant tumor regression (P < 0.05) and prolongation of survival (P < 0.01). Administration of (131)I further enhanced the antitumor effect of MV-NIS virotherapy (P < 0.05). In conclusion, MV-NIS is an oncolytic vector with significant antitumor activity against prostate cancer, which can be further enhanced by (131)I administration. The NIS transgene allows viral localization and monitoring by noninvasive imaging which can facilitate dose optimization in a clinical setting.


Expert Opinion on Biological Therapy | 2008

Oncolytic measles virus strains in the treatment of gliomas.

Cory Allen; Georgia Paraskevakou; Chunsheng Liu; Ianko Iankov; Pavlos Msaouel; Paula J. Zollman; Rae Myers; Kah Whye Peng; Stephen J. Russell; Evanthia Galanis

Background: Recurrent gliomas have a dismal outcome despite use of multimodality treatment including surgery, radiation therapy and chemotherapy. Objective: In this article the authors discuss potential applications of oncolytic measles virus strains as novel antitumor agents in the treatment of gliomas. Methods: Important aspects of measles virus development as an anticancer therapeutic agent including engineering, retargeting and combination studies with other therapeutic modalities are discussed. The translational process that led to the first clinical trial of an engineered measles virus derivative in patients with recurrent glioblastoma multiforme is also described. Results/conclusions: Oncolytic measles virus strains hold promise as novel antitumor agents in the treatment of gliomas.


Molecular Therapy | 2008

Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity.

Cory Allen; Georgia Paraskevakou; Ianko Iankov; Caterina Giannini; Mark A. Schroeder; Jann N. Sarkaria; Raj K. Puri; Stephen J. Russell; Evanthia Galanis

The majority of glioblastoma multiforme (GBM) tumors (80%) overexpress interleukin-13 receptor α2 (IL-13Rα2), but there is no expression of IL-13Rα2 in normal brain. Vaccine strains of measles virus have significant antitumor activity against gliomas. We tested the hypothesis that measles virus entry could be retargeted via the IL-13Rα2. MV-GFP-HAA-IL-13 was generated from the Edmonston-NSe vaccine strain, by displaying human IL-13 at the C-terminus of the H protein, and introducing CD46 and signaling lymphocyte activation molecule (SLAM)-ablating mutations in H. The IL-13 retargeted virus showed significant cytopathic effect (CPE) against IL-13Rα2 overexpressing glioma lines, and lack of CPE/viral replication in normal human astrocytes and normal human fibroblasts not expressing IL-13Rα2. In vivo treatment of orthotopically implanted GBM12 xenografts demonstrated significant prolongation of survival in mice treated with the retargeted strain (P < 0.0001), and comparable activity between the IL-13R retargeted strain and MV-GFP (P = 0.6377). In contrast to MV-GFP-treated mice, administration of the retargeted strain in the central nervous system of measles replication-permissive Ifnarko CD46 Ge mice resulted in lack of neurotoxicity. Strains of measles virus retargeted against the glioma-specific IL-13Rα2 receptor have comparable therapeutic efficacy, and improved specificity as compared with the unmodified measles virus strain MV-GFP in vitro and in vivo.The majority of glioblastoma multiforme (GBM) tumors (80%) overexpress interleukin-13 receptor alpha2 (IL-13Ralpha2), but there is no expression of IL-13Ralpha2 in normal brain. Vaccine strains of measles virus have significant antitumor activity against gliomas. We tested the hypothesis that measles virus entry could be retargeted via the IL-13Ralpha2. MV-GFP-H(AA)-IL-13 was generated from the Edmonston-NSe vaccine strain, by displaying human IL-13 at the C-terminus of the H protein, and introducing CD46 and signaling lymphocyte activation molecule (SLAM)-ablating mutations in H. The IL-13 retargeted virus showed significant cytopathic effect (CPE) against IL-13Ralpha2 overexpressing glioma lines, and lack of CPE/viral replication in normal human astrocytes and normal human fibroblasts not expressing IL-13Ralpha2. In vivo treatment of orthotopically implanted GBM12 xenografts demonstrated significant prolongation of survival in mice treated with the retargeted strain (P < 0.0001), and comparable activity between the IL-13R retargeted strain and MV-GFP (P = 0.6377). In contrast to MV-GFP-treated mice, administration of the retargeted strain in the central nervous system of measles replication-permissive Ifnar(ko) CD46 Ge mice resulted in lack of neurotoxicity. Strains of measles virus retargeted against the glioma-specific IL-13Ralpha2 receptor have comparable therapeutic efficacy, and improved specificity as compared with the unmodified measles virus strain MV-GFP in vitro and in vivo.


Journal of Virology | 2006

Immunoglobulin G Antibody-Mediated Enhancement of Measles Virus Infection Can Bypass the Protective Antiviral Immune Response

Ianko Iankov; Manoj Pandey; Mary Harvey; Guy E. Griesmann; Mark J. Federspiel; Stephen J. Russell

ABSTRACT Antibodies to viral surface glycoproteins play a crucial role in immunity to measles by blocking both virus attachment and subsequent fusion with the host cell membrane. Here, we demonstrate that certain immunoglobulin G (IgG) antibodies can also enhance the entry of measles virus (MV) into monocytes and macrophages. Antibody-dependent enhancement of infectivity was observed in mouse and human macrophages using virions opsonized by a murine monoclonal antibody against the MV hemagglutinin (H) glycoprotein, polyclonal mouse anti-MV IgG, or diluted measles-immune human sera. Neither H-specific Fab fragments nor H-specific IgM could enhance MV entry in monocytes or macrophages, indicating involvement of a Fc γ receptor (FcγR)-mediated mechanism. Preincubation with an anti-fusion protein (anti-F) monoclonal antibody or a fusion-inhibitory peptide blocked infection, indicating that a functional F protein was required for viral internalization. Classical complement pathway activation did not promote infection through complement receptors and inhibited anti-H IgG-mediated enhancement. In vivo, antibody-enhanced infection allowed MV to overcome a highly protective systemic immune response in preimmunized IfnarKo-Ge46 transgenic mice. These data demonstrate a previously unidentified mechanism that may contribute to morbillivirus pathogenesis where H-specific IgG antibodies promote the spread of MV infection among FcγR-expressing host cells. The findings point to a new model for the pathogenesis of atypical MV infection observed after immunization with formalin-inactivated MV vaccine and underscore the importance of the anti-F response after vaccination.


Current Pharmaceutical Biotechnology | 2012

Attenuated oncolytic measles virus strains as cancer therapeutics

Pavlos Msaouel; Ianko Iankov; A. Dispenzieri; E. Galanis

Attenuated measles virus vaccine strains have emerged as a promising oncolytic vector platform, having shown significant anti-tumor activity against a broad range of malignant neoplasms. Measles virus strains derived from the attenuated Edmonston-B (MV-Edm) vaccine lineage have been shown to selectively infect, replicate in and lyse cancer cells while causing minimal cytopathic effect on normal tissues. This review summarizes the preclinical data that led to the rapid clinical translation of oncolytic measles vaccine strains and provides an overview of early clinical data using this oncolytic platform. Furthermore, novel approaches currently under development to further enhance the oncolytic efficacy of MV-Edm strains, including strategies to circumvent immunity or modulate immune system responses, combinatorial approaches with standard treatment modalities, virus retargeting as well as strategies for in vivo monitoring of viral replication are discussed.


Cancer Research | 2009

Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor.

Yuqi Jing; Caili Tong; Jin Zhang; Takafumi Nakamura; Ianko Iankov; Stephen J. Russell; Jaime R. Merchan

Oncolytic measles virus (MV) induces cell fusion and cytotoxicity in a CD46-dependent manner. Development of fully retargeted oncolytic MVs would improve tumor selectivity. The urokinase-type plasminogen activator receptor (uPAR) is a tumor and stromal target overexpressed in multiple malignancies. MV-H glycoproteins fully retargeted to either human or murine uPAR were engineered and their fusogenic activity was determined. Recombinant human (MV-h-uPA) and murine (MV-m-uPA) uPAR-retargeted MVs expressing enhanced green fluorescent protein (eGFP) were rescued and characterized. Viral expression of chimeric MV-H was shown by reverse transcription-PCR and Western blot. In vitro viral replication was comparable to MV-GFP control. The receptor and species specificity of MV-uPAs was shown in human and murine cells with different levels of uPAR expression. Removal of the NH(2)-terminal fragment ligand from MV-uPA by factor X(a) treatment ablated the MV-uPA functional activity. Cytotoxicity was shown in uPAR-expressing human and murine cells. MV-h-uPA efficiently infected human endothelial cells and capillary tubes in vitro. I.v. administration of MV-h-uPA delayed tumor growth and prolonged survival in the MDA-MB-231 breast cancer xenograft model. Viral tumor targeting was confirmed by immunohistochemistry. MV-m-uPA transduced murine mammary tumors (4T1) in vivo after intratumor administration. MV-m-uPA targeted murine tumor vasculature after systemic administration, as shown by dual (CD31 and MV-N) staining of tumor capillaries in the MDA-MB-231 model. In conclusion, MV-uPA is a novel oncolytic MV associated with potent and specific antitumor effects and tumor vascular targeting. This is the first retargeted oncolytic MV able to replicate in murine cells and target tumor vasculature in a uPAR-dependent manner.


Vaccine | 2011

Immunogenicity of attenuated measles virus engineered to express Helicobacter pylori neutrophil-activating protein

Ianko Iankov; Iana H. Haralambieva; Evanthia Galanis

Helicobacter pylori is a Gram-negative, spiral-shaped microorganism associated with acute and chronic gastritis, peptic ulcer, gastric cancer and gastric lymphomas in humans. H. pylori neutrophil-activating protein (NAP) is a major virulence factor playing a central role in pathogenesis of mucosal inflammation by immune cell attraction and Th1 cytokine response polarization. NAP is protective antigen and promising vaccine candidate against H. pylori infection. Here we present the development of measles virus (MV) vaccine strain encoding the NAP antigen. In order to facilitate the extracellular transport and detection, NAP was inserted in the human lambda immunoglobulin chain replacing a major part of the variable domain. We generated two MV vectors expressing secretory NAP forms: MV-lambda-NAP encoding the full-length constant lambda light chain domain and MV-s-NAP encoding only the N-terminus of the lambda light chain with the leader peptide. Immunization of MV permissive Ifnarko-CD46Ge transgenic mice by a single intraperitoneal injection of the NAP-expressing strains induced a robust, long-term humoral and cellular immune response against MV. Nine months post vaccination measles-neutralizing antibody titers were above the serum level considered protective for humans. Furthermore, all animals immunized with MV strains expressing the secretory NAP antigen developed strong humoral immunity against NAP, reaching titers >1:10,000 within 2-4 weeks. IFN-γ ELISpot assay confirmed that NAP-encoding MV vectors can also stimulate NAP-specific cell-mediated immunity. Our data demonstrate that MV is an excellent vector platform for expression of bacterial antigens and development of vaccines for H. pylori immunoprophylaxis in humans.


Molecular Therapy | 2012

Expression of immunomodulatory neutrophil-activating protein of Helicobacter pylori enhances the antitumor activity of oncolytic measles virus

Ianko Iankov; Cory Allen; Mark J. Federspiel; Rae Myers; Kah Whye Peng; James N. Ingle; Stephen J. Russell; Evanthia Galanis

Helicobacter pylori neutrophil-activating protein (NAP) is a major virulence factor and powerful inducer of inflammatory reaction and Th1-polarized immune response. Here, we evaluated the therapeutic efficacy of measles virus (MV) strains engineered to express secretory NAP forms against metastatic breast cancer. Recombinant viruses encoding secretory NAP forms (MV-lambda-NAP and MV-s-NAP) efficiently infect and destroy breast cancer cells by cell-to-cell viral spread and large syncytia formation independently of hormone receptor status. Intrapleural administration of MV-s-NAP doubled the median survival in a pleural effusion xenograft model: 65 days as compared to 29 days in the control group (P < 0.0001). This therapeutic effect correlated with a brisk Th1 type cytokine response in vivo. Secretory NAP was expressed at high levels by infected tumor cells and increased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-12/23 cytokine concentrations were detected in the pleural effusion. In an aggressive model of lung metastatic breast cancer, MV-lambda-NAP and MV-s-NAP also significantly improved survival of the treated animals (P < 0.05) as compared to the control MV strain. These data suggest that potent immunomodulators of bacterial origin, such as H. pylori NAP, can enhance the antitumor effect of oncolytic viruses and support the feasibility and potential of a combined viroimmunotherapy approach.


International Journal of Oncology | 2014

Inhibition of Cdk2 kinase activity selectively targets the CD44+/CD24-/Low stem-like subpopulation and restores chemosensitivity of SUM149PT triple-negative breast cancer cells

Mateusz Opyrchal; Jeffrey L. Salisbury; Ianko Iankov; Mathew P. Goetz; James A. McCubrey; Mario W. Gambino; Lorenzo Malatino; Giuseppe Puccia; James N. Ingle; Evanthia Galanis; Antonino B. D'Assoro

Inflammatory breast cancer (IBC) is an angioinvasive and most aggressive type of advanced breast cancer characterized by rapid proliferation, chemoresistance, early metastatic development and poor prognosis. IBC tumors display a triple-negative breast cancer (TNBC) phenotype characterized by centrosome amplification, high grade of chromosomal instability (CIN) and low levels of expression of estrogen receptor α (ERα), progesterone receptor (PR) and HER-2 tyrosine kinase receptor. Since the TNBC cells lack these receptors necessary to promote tumor growth, common treatments such as endocrine therapy and molecular targeting of HER-2 receptor are ineffective for this subtype of breast cancer. To date, not a single targeted therapy has been approved for non-inflammatory and inflammatory TNBC tumors and combination of conventional cytotoxic chemotherapeutic agents remains the standard therapy. IBC tumors generally display activation of epithelial to mesenchymal transition (EMT) that is functionally linked to a CD44+/CD24−/Low stem-like phenotype. Development of EMT and consequent activation of stemness programming is responsible for invasion, tumor self-renewal and drug resistance leading to breast cancer progression, distant metastases and poor prognosis. In this study, we employed the luminal ER+ MCF-7 and the IBC SUM149PT breast cancer cell lines to establish the extent to which high grade of CIN and chemoresistance were mechanistically linked to the enrichment of CD44+/CD24low/− CSCs. Here, we demonstrate that SUM149PT cells displayed higher CIN than MCF-7 cells characterized by higher percentage of structural and numerical chromosomal aberrations. Moreover, centrosome amplification, cyclin E overexpression and phosphorylation of retinoblastoma (Rb) were restricted to the stem-like CD44+/CD24−/Low subpopulation isolated from SUM149PT cells. Significantly, CD44+/CD24−/Low CSCs displayed resistance to conventional chemotherapy but higher sensitivity to SU9516, a specific cyclin-dependent kinase 2 (Cdk2) inhibitor, demonstrating that aberrant activation of cyclin E/Cdk2 oncogenic signaling is essential for the maintenance and expansion of CD44+/CD24−/Low CSC subpopulation in IBC. In conclusion, our findings propose a novel therapeutic approach to restore chemosensitivity and delay recurrence of IBC tumors based on the combination of conventional chemotherapy with small molecule inhibitors of the Cdk2 cell cycle kinase.

Collaboration


Dive into the Ianko Iankov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge