Iannis E. Adamopoulos
Schering-Plough
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iannis E. Adamopoulos.
Arthritis Research & Therapy | 2010
Iannis E. Adamopoulos; Cheng Chi Chao; Richard Geissler; Drake LaFace; Wendy M. Blumenschein; Yoichiro Iwakura; Terrill K. McClanahan; Edward P. Bowman
IntroductionThe interaction between the immune and skeletal systems is evidenced by the bone loss observed in autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune cytokine IL-17A directly affects osteoclastogenesis.MethodsHuman CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and stimulated with IL-17A and/or receptor activator of NF-κB ligand (RANKL). Osteoclast differentiation was evaluated by gene expression, flow cytometry, tartrate-resistant acid phosphatase staining, fluorescence and electron microscopy. Physiologic bone remodelling was studied in wild-type (Wt) and IL-17A-/- mice using micro-computer tomography and serum RANKL/osteoprotegerin concentration. Functional osteoclastogenesis assays were performed using bone marrow macrophages isolated from IL-17A-/- and Wt mice.ResultsIL-17A upregulates the receptor activator for NF-κB receptor on human osteoclast precursors in vitro, leading to increased sensitivity to RANKL signalling, osteoclast differentiation and bone loss. IL-17A-/- mice have physiological bone homeostasis indistinguishable from Wt mice, and bone marrow macrophages isolated from these mice develop fully functional normal osteoclasts.ConclusionsCollectively our data demonstrate anti-IL-17A treatment as a selective therapeutic target for bone loss associated with autoimmune diseases.
Journal of Immunology | 2011
Iannis E. Adamopoulos; Marlowe Tessmer; Cheng Chi Chao; Sarvesh Adda; Dan Gorman; Mary Petro; Chuan Chu Chou; Robert H. Pierce; Wei Yao; Nancy E. Lane; Drake LaFace; Edward P. Bowman
The role of IL-23 in the development of arthritis and bone metabolism was studied using systemic IL-23 exposure in adult mice via hydrodynamic delivery of IL-23 minicircle DNA in vivo and in mice genetically deficient in IL-23. Systemic IL-23 exposure induced chronic arthritis, severe bone loss, and myelopoiesis in the bone marrow and spleen, which resulted in increased osteoclast differentiation and systemic bone loss. The effect of IL-23 was partly dependent on CD4+ T cells, IL-17A, and TNF, but could not be reproduced by overexpression of IL-17A in vivo. A key role in the IL-23–induced arthritis was made by the expansion and activity of myeloid cells. Bone marrow macrophages derived from IL-23p19−/− mice showed a slower maturation into osteoclasts with reduced tartrate-resistant acid phosphatase-positive cells and dentine resorption capacity in in vitro osteoclastogenesis assays. This correlated with fewer multinucleated osteoclast-like cells and more trabecular bone volume and number in 26-wk-old male IL-23p19−/− mice compared with control animals. Collectively, our data suggest that systemic IL-23 exposure induces the expansion of a myeloid lineage osteoclast precursor, and targeting IL-23 pathway may combat inflammation-driven bone destruction as observed in rheumatoid arthritis and other autoimmune arthritides.
Journal of Experimental Medicine | 2010
Barbara Joyce-Shaikh; Michael E. Bigler; Cheng Chi Chao; Erin Murphy; Wendy M. Blumenschein; Iannis E. Adamopoulos; Paul G. Heyworth; Svetlana Antonenko; Edward P. Bowman; Terrill K. McClanahan; Joseph H. Phillips; Daniel J. Cua
DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type–specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders.
Arthritis Research & Therapy | 2008
Iannis E. Adamopoulos; Edward P. Bowman
A significant macrophage and T-cell infiltrate commonly occurs in inflammatory joint conditions such as rheumatoid arthritis that have significant bone destruction. Cytokines produced by activated macrophages and T cells are implicated in arthritis pathogenesis and are involved in osteoclast-mediated bone resorption. The scope of the present review is to analyze current knowledge and to provide a better understanding of how macrophage-derived factors promote the differentiation of a novel T-helper subset (Th17) that promotes osteoclast formation and activation.
Autoimmunity | 2010
Cheng Chi Chao; Shi Juan Chen; Iannis E. Adamopoulos; Michael Judo; Agelio Asio; Gulesi Ayanoglu; Edward P. Bowman
Bone erosion is a clinical endpoint for various diseases including rheumatoid arthritis. In this paper, we used rodent arthritis models with severe bone erosion to examine the structural, cellular, and molecular aspects of the inflammation-driven bone resorption process. Our data show that bone loss is observed only in chronically, severely inflamed joints. The most severely affected anatomic sites were the metatarsal phalangeal joint and tarsal bones of the paw. The magnitude of the inflammation-driven bone erosion was dependent on both the duration of inflammatory response and the severity of the joint swelling response. The application of micro-computed tomography well demonstrated the therapeutic benefit of anti-IL-17A in protection of bones from erosion. Alterations in the cellular profile of the joint occurred prior to any major structural deterioration of the bone. Receptor activator for nuclear factor κB ligand, a potent inducer of osteoclast differentiation and bone resorption, was elevated in animals coincident with severe arthritis initiation. The experimental approaches and concepts outlined in this paper provide a valuable process to evaluate and quantify therapies that modulate rodent arthritis-associated bone-erosion models.
Journal of Visualized Experiments | 2014
Dennis J. Wu; Neha Dixit; Erika Suzuki; Thanh Nguyen; Hyun Seock Shin; Jack Davis; Emanual Maverakis; Iannis E. Adamopoulos
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.
European Journal of Rheumatology | 2017
Elizabeth A. Wang; Erika Suzuki; Emanual Maverakis; Iannis E. Adamopoulos
Psoriatic arthritis (PsA) is a chronic and progressive inflammatory arthritis intimately associated with psoriasis, and can be an impairing disease that leads to reduced quality of life and significant morbidity. Treatment often requires TNF antagonists, yet many patients with PsA are not responsive to the standard anti-TNF therapies. The interleukin-17 (IL-17)/IL-17 receptor (IL-17R) family has recently been implicated in the pathogenesis of PsA and psoriasis. Much enthusiasm has been generated for the development of biologics that target the IL-17 signaling pathway directly or indirectly, many of which have produced striking results in the setting of psoriasis and PsA. Herein, we review the role of IL-17 and the IL-17 receptor (IL-17R) in the pathogenesis of PsA, as well as the clinical evidence for IL-17 and IL-17R targeted therapeutics.
JCI insight | 2018
Alexander A. Merleev; Alina I. Marusina; Chelsea Ma; James T. Elder; Lam C. Tsoi; Siba P. Raychauduri; Stephan Weidinger; Elizabeth A. Wang; Iannis E. Adamopoulos; Guillaume Luxardi; Johann E. Gudjonsson; Michiko Shimoda; Emanual Maverakis
Numerous studies of relatively few patients have linked T cell receptor (TCR) genes to psoriasis but have yielded dramatically conflicting results. To resolve these discrepancies, we have chosen to mine RNA-Seq datasets for patterns of TCR gene segment usage in psoriasis. A meta-analysis of 3 existing and 1 unpublished datasets revealed a statistically significant link between the relative expression of TRAJ23 and psoriasis and the psoriasis-associated cytokine IL-17A. TRGV5, a TCR-γ segment, was also associated with psoriasis but correlated instead with IL-36A, other IL-36 family members, and IL-17C (not IL-17A). In contrast, TRAJ39 was strongly associated with healthy skin. T cell diversity measurements and analysis of CDR3 sequences were also conducted, revealing no psoriasis-associated public CDR3 sequences. Finally, in comparison with the expression of TCR-αβ genes, the expression of TCR-γδ genes was relatively low but mildly elevated in psoriatic skin. These results have implications for the development of targeted therapies for psoriasis and other autoimmune diseases. Also, the techniques employed in this study have applications in other fields, such as cancer immunology and infectious disease.
Journal of Immunology | 2015
Hyun-Seock Shin; Ritu Sarin; Neha Dixit; Jian Wu; M. Eric Gershwin; Edward P. Bowman; Iannis E. Adamopoulos
IL-23 has been well studied in the context of T cell differentiation; however, its role in the differentiation of myeloid progenitors is less clear. In this paper, we describe a novel role of IL-23 in myeloid cell differentiation. Specifically, we have identified that in human PBMCs, IL-23 induces the expression of MDL-1, a PU.1 transcriptional target during myeloid differentiation, which orchestrates osteoclast differentiation through activation of DNAX activating protein of 12 kDa and its ITAMs. The molecular events that lead to the differentiation of human macrophages to terminally differentiated osteoclasts are dependent on spleen tyrosine kinase and phospholipase Cγ2 phosphorylation for the induction of intracellular calcium flux and the subsequent activation of master regulator osteoclast transcription factor NFATc1. IL-23–elicited osteoclastogenesis is independent of the receptor activator of NF-κB ligand pathway and uses a unique myeloid DNAX activating protein of 12 kDa–associated lectin-1+/DNAX activating protein of 12 kDa+ cell subset. Our data define a novel pathway that is used by IL-23 in myeloid cells and identify a major mechanism for the stimulation of osteoclastogenesis in inflammatory arthritis.
Journal of Autoimmunity | 2017
Dennis J. Wu; Ran Gu; Ritu Sarin; Regina Zavodovskaya; Chia Pei Chen; Blaine A. Christiansen; Konstantinos Zarbalis; Iannis E. Adamopoulos