Iben R. Veland
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iben R. Veland.
Nephron Physiology | 2009
Iben R. Veland; Aashir Awan; Lotte B. Pedersen; Bradley K. Yoder; Søren T. Christensen
Although first described as early as 1898 and long considered a vestigial organelle of little functional importance, the primary cilium has become one of the hottest research topics in modern cell biology and physiology. Primary cilia are nonmotile sensory organelles present in a single copy on the surface of most growth-arrested or differentiated mammalian cells, and defects in their assembly or function are tightly coupled to many developmental defects, diseases and disorders. In normal tissues, the primary cilium coordinates a series of signal transduction pathways, including Hedgehog, Wnt, PDGFRα and integrin signaling. In the kidney, the primary cilium may function as a mechano-, chemo- and osmosensing unit that probes the extracellular environment and transmits signals to the cell via, e.g., polycystins, which depend on ciliary localization for appropriate function. Indeed, hypomorphic mutations in the mouse ift88 (previously called Tg737) gene, which encodes a ciliogenic intraflagellar transport protein, result in malformation of primary cilia, and in the collecting ducts of kidney tubules this is accompanied by development of autosomal recessive polycystic kidney disease (PKD). While PKD was one of the first diseases to be linked to dysfunctional primary cilia, defects in this organelle have subsequently been associated with many other phenotypes, including cancer, obesity, diabetes as well as a number of developmental defects. Collectively, these disorders of the cilium are now referred to as the ciliopathies. In this review, we provide a brief overview of the structure and function of primary cilia and some of their roles in coordinating signal transduction pathways in mammalian development, health and disease.
Developmental Dynamics | 2008
Lotte B. Pedersen; Iben R. Veland; Jacob M. Schrøder; Søren T. Christensen
Primary cilia are microtubule‐based, hair‐like sensory organelles present on the surface of most growth‐arrested cells in our body. Recent research has demonstrated a crucial role for primary cilia in regulating vertebrate developmental pathways and tissue homeostasis, and defects in genes involved in primary cilia assembly or function have been associated with a panoply of disorders and diseases, including polycystic kidney disease, left‐right asymmetry defects, hydrocephalus, and Bardet Biedl Syndrome. Here we provide an up‐to‐date review focused on the molecular mechanisms involved in the assembly of primary cilia in vertebrate cells. We present an overview of the early stages of the cilia assembly process, as well as a description of the intraflagellar transport (IFT) system. IFT is a highly conserved process required for assembly of almost all eukaryotic cilia and flagella, and much of our current knowledge about IFT is based on studies performed in Chlamydomonas and Caenorhabditis elegans. Therefore, our review of the IFT literature includes studies performed in these two model organisms. The role of several non‐IFT proteins (e.g., centrosomal proteins) in the ciliary assembly process is also discussed. Developmental Dynamics 237:1993–2006, 2008.
Cellular Physiology and Biochemistry | 2010
Linda Schneider; Michael Cammer; Jonathan M. Lehman; Sonja K. Nielsen; Charles F. Guerra; Iben R. Veland; Christian Stock; Else K. Hoffmann; Bradley K. Yoder; Albrecht Schwab; Peter Satir; Søren T. Christensen
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRα signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88Tg737Rpw) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRα signaling to monitor directional movement during wound healing.
Cell Reports | 2013
Christian A. Clement; Katrine Dalsgaard Ajbro; Karen Koefoed; Maj Linea Vestergaard; Iben R. Veland; Maria Perestrello Ramos Henriques de Jesus; Lotte B. Pedersen; Alexandre Benmerah; Claus Yding Andersen; Lars Allan Larsen; Søren T. Christensen
Transforming growth factor β (TGF-β) signaling is regulated by clathrin-dependent endocytosis (CDE) for the control of cellular processes during development and in tissue homeostasis. The primary cilium coordinates several signaling pathways, and the pocket surrounding the base and proximal part of the cilium is a site for CDE. We report here that TGF-β receptors localize to the ciliary tip and endocytic vesicles at the ciliary base in fibroblasts and that TGF-β stimulation increases receptor localization and activation of SMAD2/3 and ERK1/2 at the ciliary base. Inhibition of CDE reduced TGF-β-mediated signaling at the cilium, and TGF-β signaling and CDE activity are reduced at stunted primary cilia in Tg737orpk fibroblasts. Similarly, TGF-β signaling during cardiomyogenesis correlated with accumulation of TGF-β receptors and activation of SMAD2/3 at the ciliary base. Our results indicate that the primary cilium regulates TGF-β signaling and that the ciliary pocket is a compartment for CDE-dependent regulation of signal transduction.
Current Topics in Developmental Biology | 2008
Søren T. Christensen; Stine F. Pedersen; Peter Satir; Iben R. Veland; Linda Schneider
Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration.
Developmental Dynamics | 2008
Sonja K. Nielsen; Kjeld Møllgård; Christian A. Clement; Iben R. Veland; Aashir Awan; Bradley K. Yoder; Ivana Novak; Søren T. Christensen
Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct adenocarcinoma cell lines, PANC‐1 and CFPAC‐1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary cilia of PANC‐1 and CFPAC‐1 cells, which may maintain high levels of nonstimulated Hh pathway activity. These findings indicate that primary cilia are involved in pancreatic development and postnatal tissue homeostasis. Developmental Dynamics 237:2039–2052, 2008.
Organogenesis | 2014
Karen Koefoed; Iben R. Veland; Lotte B. Pedersen; Lars Allan Larsen; Søren T. Christensen
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development.
PLOS ONE | 2013
Iben R. Veland; Rodrick Montjean; Lorraine Eley; Lotte B. Pedersen; Albrecht Schwab; Judith A. Goodship; Karsten Kristiansen; Stine F. Pedersen; Sophie Saunier; Søren T. Christensen
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv−/− and inv+/+ animals, we confirmed that both inv−/− and inv+/+ MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv+/+ MEFs. In wound healing assays, inv−/− MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv−/− MEFs as compared to inv+/+ MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv−/− MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv−/− MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na+/H+ exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv−/− MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Methods in Enzymology | 2013
Søren T. Christensen; Iben R. Veland; Albrecht Schwab; Michael Cammer; Peter Satir
Early studies of migrating fibroblasts showed that primary cilia orient in front of the nucleus and point toward the leading edge. Recent work has shown that primary cilia coordinate a series of signaling pathways critical to fibroblast cell migration during development and in wound healing. In particular, platelet-derived growth factor receptor alpha (PDGFRα) is compartmentalized to the primary cilium to activate signaling pathways that regulate reorganization of the cytoskeleton required for lamellipodium formation and directional migration in the presence of a specific ligand gradient. We summarize selected methods in analyzing ciliary function in directional cell migration, including immunofluorescence microscopy, scratch assay, and chemotaxis assay by micropipette addition of PDGFRα ligands to cultures of fibroblasts. These methods should be useful not only in studying cell migration but also more generally in delineating response pathways in cells with primary cilia.
BioScience | 2014
Iben R. Veland; Louise Lindbæk; Søren T. Christensen
Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration.