Ibrahim A. Alhaider
King Faisal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ibrahim A. Alhaider.
Journal of Controlled Release | 2013
Anroop B. Nair; Rachna Kumria; Sree Harsha; Mahesh Attimarad; Bandar E. Al-Dhubiab; Ibrahim A. Alhaider
Extensive research on transmucosal drug delivery in the past few decades has resulted in the clinical application of several drug molecules through the buccal route. Interestingly, most of the new chemical moieties under clinical trials are being screened for their potential to deliver through the buccal cavity. In this context, buccal film offers several advantages including convenient dosing and better patient compliance. However, the greatest challenge is to develop a high quality buccal film which also necessitates constant evaluation and understanding the performance of the dosage form, the critical steps to achieve a successful product development. Despite the intense focus on buccal film based drug delivery system, there are no official standardized methods for its evaluation. Significant efforts have been made to demonstrate and improve the efficacy, potency and safety of buccal film using in vitro, ex vivo and in vivo assessments. Besides the physical properties of the film, several other parameters such as residence time, mucoadhesion, drug release, in vitro and in vivo buccal permeation profiles and absorption kinetics of the drug are examined while characterizing the prepared buccal films. However, various research groups have employed different methods and experimental conditions to evaluate the formulation, which has limited the comparison of data between the research groups. This review provides an overview about the various parameters that are considered and assessed as a part of formulation development to ensure quality product with desired characteristics.
Molecular and Cellular Neuroscience | 2011
Ibrahim A. Alhaider; Abdulaziz M. Aleisa; Trinh T. Tran; Karim A. Alkadhi
It is well known that caffeine and sleep deprivation have opposing effects on learning and memory; therefore, this study was undertaken to determine the effects of chronic (4wks) caffeine treatment (0.3g/l in drinking water) on long-term memory deficit associated with 24h sleep deprivation. Animals were sleep deprived using the modified multiple platform method. The results showed that chronic caffeine treatment prevented the impairment of long-term memory as measured by performance in the radial arm water maze task and normalized L-LTP in area CA1 of the hippocampi of sleep-deprived anesthetized rats. Sleep deprivation prevents the high frequency stimulation-induced increases in the levels of phosphorylated-cAMP response element binding protein (P-CREB) and brain-derived neurotrophic factor (BDNF) seen during the expression of late phase long-term potentiation (L-LTP). However, chronic caffeine treatment prevented the effect of sleep-deprivation on the stimulated levels of P-CREB and BDNF. The results suggest that chronic caffeine treatment may protect the sleep-deprived brain probably by preserving the levels of P-CREB and BDNF.
European Journal of Neuroscience | 2010
Ibrahim A. Alhaider; Abdulaziz M. Aleisa; Trinh T. Tran; Karim A. Alkadhi
We have previously reported that caffeine prevented sleep deprivation‐induced impairment of long‐term potentiation (LTP) of area CA1 as well as hippocampus‐dependent learning and memory performance in the radial arm water maze. In this report we examined the impact of long‐term (4‐week) caffeine consumption (0.3 g/L in drinking water) on synaptic plasticity ( Alhaider et al., 2010 ) deficit in the dentate gyrus (DG) area of acutely sleep‐deprived rats. The sleep deprivation and caffeine/sleep deprivation groups were sleep‐deprived for 24 h by using the columns‐in‐water technique. We tested the effect of caffeine and/or sleep deprivation on LTP and measured the basal levels as well as stimulated levels of LTP‐related molecules in the DG. The results showed that chronic caffeine administration prevented the impairment of early‐phase LTP (E‐LTP) in the DG of sleep‐deprived rats. Additionally, chronic caffeine treatment prevented the sleep deprivation‐associated decreases in the basal levels of the phosphorylated calcium/calmodulin‐dependent protein kinase II (P‐CaMKII) and brain derived neurotrophic factor (BDNF) as well as in the stimulated levels of P‐CaMKII in the DG area. The results suggest that chronic use of caffeine prevented anomalous changes in the basal levels of P‐CaMKII and BDNF associated with sleep deprivation and as a result contributes to the revival of LTP in the DG region.
Hippocampus | 2010
Abdulaziz M. Aleisa; Gouda Kamel Helal; Ibrahim A. Alhaider; Karem H. Alzoubi; Marisa Srivareerat; Trinh T. Tran; Salim S. Al-Rejaie; Karim A. Alkadhi
Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long‐term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD‐induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg−1 s.c.) twice a day. In the radial arm water maze (RAWM) task, 24‐ or 48‐h SD significantly impaired learning and short‐term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24‐ and 48‐h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD‐induced impairment of learning and STM and prevented SD‐induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.
Current Neuropharmacology | 2013
Karim A. Alkadhi; Munder A. Zagaar; Ibrahim A. Alhaider; Samina Salim; Abdulaziz M. Aleisa
Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.
Sleep | 2013
Munder A. Zagaar; An Dao; Amber T. Levine; Ibrahim A. Alhaider; Karim A. Alkadhi
STUDY OBJECTIVES The present study aimed to investigate the effects of treadmill exercise on sleep deprivation (S-D)-induced impairment of hippocampal dependent long-term memory, late phase long-term potentiation (L-LTP) and its signaling cascade in the cornu ammonis 1 (CA1) area. EXPERIMENTAL DESIGN Animals were conditioned to run on treadmills for 4 weeks then deprived of sleep for 24 h using the columns-in-water method. We tested the effect of exercise and/or S-D on behavioral performance using a post-learning paradigm in the radial arm water maze (RAWM) and in vivo extracellular recording in the CA1 area. The levels of L-LTP-related molecules in the CA1 area were then assessed both before and after L-LTP induction. MEASUREMENTS AND RESULTS After 24 h of S-D, spatial long-term memory impairment in the RAWM and L-LTP suppression was prevented by 4 weeks of regular exercise. Regular exercise also restored the S-D-associated decreases in the basal levels of key signaling molecules such as: calcium/calmodulin kinase IV (CaMKIV), mitogen-activated protein kinase (MAPK/ERK), phosphorylated cAMP response element-binding protein (P-CREB) and brain derived neurotrophic factor (BDNF), in the CA1 area. After L-LTP induction, regular exercise also prevented the S-D-induced down regulation of BDNF and P-CREB protein levels. CONCLUSIONS The results suggest that our exercise protocol may prevent 24-h S-D-induced impairments in long-term memory and LTP by preventing deleterious changes in the basal and post-stimulation levels of P-CREB and BDNF associated with S-D.
Stem Cells International | 2012
Mohammad T. Elnakish; Fatemat Hassan; Duaa Dakhlallah; Clay B. Marsh; Ibrahim A. Alhaider; Mahmood Khan
Cardiovascular disease (CVD) is the leading cause of death worldwide. According to the World Health Organization (WHO), an estimate of 17.3 million people died from CVDs in 2008 and by 2030, the number of deaths is estimated to reach almost 23.6 million. Despite the development of a variety of treatment options, heart failure management has failed to inhibit myocardial scar formation and replace the lost cardiomyocyte mass with new functional contractile cells. This shortage is complicated by the limited ability of the heart for self-regeneration. Accordingly, novel management approaches have been introduced into the field of cardiovascular research, leading to the evolution of gene- and cell-based therapies. Stem cell-based therapy (aka, cardiomyoplasty) is a rapidly growing alternative for regenerating the damaged myocardium and attenuating ischemic heart disease. However, the optimal cell type to achieve this goal has not been established yet, even after a decade of cardiovascular stem cell research. Mesenchymal stem cells (MSCs) in particular have been extensively investigated as a potential therapeutic approach for cardiac regeneration, due to their distinctive characteristics. In this paper, we focus on the therapeutic applications of MSCs and their transition from the experimental benchside to the clinical bedside.
Molecular and Cellular Neuroscience | 2013
Munder A. Zagaar; An Dao; Ibrahim A. Alhaider; Karim A. Alkadhi
STUDY OBJECTIVES Evidence suggests that regular exercise can protect against learning and memory impairment in the presence of insults such as sleep deprivation. The dentate gyrus (DG) area of the hippocampus is a key staging area for learning and memory processes and is particularly sensitive to sleep deprivation. The purpose of this study was to determine the effect of regular exercise on early-phase long-term potentiation (E-LTP) and its signaling cascade in the presence of sleep deprivation. EXPERIMENTAL DESIGN Rats were exposed to 4 weeks of regular treadmill exercise then subsequently sleep-deprived for 24h using the modified multiple platform model before experimentation. We tested the effects of exercise and/or sleep deprivation using electrophysiological recording in the DG to measure synaptic plasticity; and Western blot analysis to quantify the levels of key signaling proteins related to E-LTP. MEASUREMENTS AND RESULTS Regular exercise prevented the sleep deprivation-induced impairment of E-LTP in the DG area as well as the sleep deprivation-associated decrease in basal protein levels of phosphorylated and total α calcium/calmodulin-dependent protein kinase II (P/total-CaMKII) and brain-derived neurotrophic factor (BDNF). High frequency stimulation (HFS) to the DG area was used to model learning stimuli and increased the P-CaMKII and BDNF levels in normal animals: yet failed to change these levels in sleep-deprived rats. However, HFS in control and sleep-deprived rats increased the levels of the phosphatase calcineurin. In contrast, exercise increased BDNF and P-CaMKII levels in exercised/sleep-deprived rats. CONCLUSIONS Regular exercise appears to exert a protective effect against sleep deprivation-induced spatial memory impairment by inducing hippocampal signaling cascades that positively modulate basal and stimulated levels of key effectors such as P-CaMKII and BDNF, while attenuating increases in the protein phosphatase calcineurin.
Journal of Neurochemistry | 2011
Trinh T. Tran; Marisa Srivareerat; Ibrahim A. Alhaider; Karim A. Alkadhi
J. Neurochem. (2011) 119, 408–416.
Drug Design Development and Therapy | 2015
Sree Harsha; Bander E. Aldhubiab; Anroop B. Nair; Ibrahim A. Alhaider; Mahesh Attimarad; K. N. Venugopala; Saminathan Srinivasan; Nagesh Gangadhar; Afzal Haq Asif
Diabetes is considered one of the main threats to global public health in this era. It is increasing rapidly in every part of the world; the prevalence of the disease will grow to the point where 366 million people will be affected by 2030. The prevalence of diabetes mellitus (DM) in the Saudi population is high, and the majority of patients suffer from type 2 DM. Marketed oral antidiabetic drugs have indicated poor tolerability during chronic treatments, and this contributes to the moderately large proportion of type 2 DM patients that remain inadequately managed. Vildagliptin nanospheres were prepared with aminated gelatin using a spray-drying method; narrow particle-size distribution was seen at 445 nm. The angle of repose was found to be θ <33.5°. The nanospheres appeared to be spherical with a smooth surface. The drug content and percentage yield of the nanospheres were found to be 76.2%±4.6% and 83%±2%, respectively. The nanosphere-swell profile was found to be 165%±7%. The pure drug was 100% dissolved in 30 minutes, and the nanosphere formulation took 12 hours to dissolve (97.5%±2%), and followed a Korsmeyer–Peppas kinetic model with an R2 of 0.9838. The wash-off test of nanospheres found that they exhibited an excellent mucoadhesive property at 86.7% for 8 hours. The stability-study data showed no changes in the physicochemical properties of the nanospheres, and suggested that the nanospheres be stored below room temperature. The amount of vildagliptin retained was 1.6% within 3 hours, and in comparison with the gelatin vildagliptin nanoparticles formulation, the percentage that was retained was much higher (98.2% in 12 hours).