Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where İbrahim Gülseren is active.

Publication


Featured researches published by İbrahim Gülseren.


Food Chemistry | 2012

Zinc incorporation capacity of whey protein nanoparticles prepared with desolvation with ethanol.

İbrahim Gülseren; Yuan Fang; Milena Corredig

Whey protein isolate (WPI) nanoparticles were prepared using ethanol desolvation, and their capacity to incorporate ZnCl(2) was analysed. Desolvation was carried out at pH 9 and the volume of added ethanol was 0-3 times the volume of protein solution. The desolvated solutions were dispersed in acidified water (pH 3) immediately after desolvation. The size of the WPI nanoparticles increased with the volume ratio of ethanol:water used, as well as with the amount of ZnCl(2). The nanoparticles showed high incorporation efficiencies, and remained stable after 30 days of storage at 22 °C. The amount of zinc incorporated in the WPI particle suspensions was within the range of daily zinc requirements for healthy adults.


Journal of Agricultural and Food Chemistry | 2013

Storage Stability and Physical Characteristics of Tea-Polyphenol-Bearing Nanoliposomes Prepared with Milk Fat Globule Membrane Phospholipids

İbrahim Gülseren; Milena Corredig

The objective of this work was to better understand the functional properties of milk phospholipids when used as ingredients to prepare liposomes. Liposomal dispersions (10%) were prepared using high-pressure homogenization, and their physical properties as well as their ability to encapsulate tea polyphenols were investigated. The extent of encapsulation, measured by HPLC, increased with tea polyphenol concentration up to about 4 mg·mL(-1). At polyphenol concentrations ≥ 6 mg·mL(-1), the liposome dispersions were no longer stable. The influence of pH (3-7), storage temperature (room temperature or refrigeration), and addition of sugars (0-15%) were studied for liposomes containing 4 mg·mL(-1) polyphenols. The liposomal dispersions were also stable in the presence of peptides. The storage stability of the systems prepared with milk phospholipids was compared to that of liposomes made with soy phospholipids. Soy liposomes were smaller in size than milk phospholipid liposomes, the encapsulation efficiency was higher, and the extent of release of tea polyphenols during storage was lower for milk phospholipid liposomes compared to soy liposomes. The results suggest that milk phospholipids could be employed to prepare tea-polyphenol-bearing liposomes and that the tea catechins may be incorporated in the milk phospholipid bilayer more efficiently than in the case of a soy phospholipid bilayer.


Journal of Agricultural and Food Chemistry | 2014

Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.

Pauline Lestringant; Anilda Guri; İbrahim Gülseren; Perla Relkin; Milena Corredig

Varying amounts of epigallocatechin-3-gallate (EGCG) were encapsulated in β-lactoglobulin (β-Lg) nanoparticles, either native or processed, denoted as heated or desolvated protein. The stability, physical properties, and bioactivity of the β-Lg-EGCG complexes were tested. Native β-Lg-EGCG complexes showed comparable stability and binding efficacy (EGCG/β-Lg molar ratio of 1:1) to heated β-Lg nanoparticles (1% and 5% protein w/w). The sizes of heated and desolvated β-Lg nanoparticles were comparable, but the latter showed the highest binding affinity for EGCG. The presence of EGCG complexed with β-Lg did not affect the interfacial tension of the protein when tested at the soy oil-water interface but caused a decrease in dilational elasticity. All β-Lg complexes (native, heated, or desolvated) showed a decrease in cellular proliferation similar to that of free ECGC. In summary, protein-EGCG complexes did not alter the bioefficacy of EGCG and contributed to increased stability with storage, demonstrating the potential benefits of nanoencapsulation.


Colloids and Surfaces B: Biointerfaces | 2013

Interactions of chitin nanocrystals with β-lactoglobulin at the oil–water interface, studied by drop shape tensiometry

İbrahim Gülseren; Milena Corredig

Particle stabilized emulsions have been gaining increasing attention in the past few years, because of their unique interfacial properties. However, interactions between food grade particles and other surfactants at the interface still need to be understood. In this research, the interfacial properties of chitin nanocrystals (ChN) were studied in the presence of a surface active milk protein, β-lactoglobulin (β-lg), often used to stabilize oil-in-water emulsions. ChN were prepared by acid hydrolysis of chitin. At low pH (pH 3), ChN and β-lg do not interact, as demonstrated by light scattering measurements, and both components carry positive charge. The properties of the interface were tested using drop shape tensiometry. Addition of ChN or β-lg to the aqueous phase reduced the interfacial tension, and β-lg adsorption was characterized with an increase in the interfacial elasticity. When β-lg was added to a solution containing 0.1% ChN, the film elasticity increased first and then decreased with increasing β-lg concentration. The mixed film elasticity was the highest at a combination of 0.1% ChN+0.01% β-lg, when both molecules were simultaneously added to the aqueous phase. On the other hand, when β-lg was added after ChN, the protein did not affect the properties of the interface, indicating that the ChN (0.1%) equilibrated film was stable and that protein-protein interactions, normally resulting in an increase in the film elasticity, did not occur.


Journal of Colloid and Interface Science | 2010

Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification

İbrahim Gülseren; Marcela Alexander; Milena Corredig

In colloidal systems physical-chemical changes are often a function of volume fraction and sample dilutions are critical. While most methods to characterize colloidal particles either require dilution or some disruption, acoustic spectroscopy can be performed in situ, without dilution. Objective of this work was to determine the effects of concentration, heating and acidification on the acoustic and electroacoustic properties of casein micelles in skim milk. The ultrasonic attenuation of skim milk increased with concentration of milk and frequency, and the average size of the colloidal particles calculated from the frequency dependence of attenuation was about 0.15 μm for both unheated and heated milk. When milk was concentrated by ultrafiltration, at 3× and 4× concentration (based on volume reduction), the calculated size deviated from that derived in undiluted or mildly concentrated milk, most likely because of increased particle-particle interactions. Electroacoustic measurements revealed a constant dynamic mobility of the particles in undiluted and concentrated milk, while lower mobilities were observed for milk diluted in permeate. The ζ-potential measured was significantly higher than the values measured using dynamic light scattering, with a value of -45.8 mV for casein micelles in unheated milk. With acidification, the ζ-potential decreased monotonically. Heating profoundly affected the change in charge with pH of the micelles, and it was concluded that the interaction of casein micelles with the whey proteins increased the surface charge of the casein micelles.


Food & Function | 2012

Complexation of high methoxyl pectin with ethanol desolvated whey protein nanoparticles: physico-chemical properties and encapsulation behaviour

İbrahim Gülseren; Yuan Fang; Milena Corredig

Using a desolvation method, whey protein isolate (WPI) nanoparticles were prepared and mixed with high methoxyl pectin (HMP) solutions (DE 72.8) to form WPI-HMP supramolecular complexes at low pH. Aqueous dispersions containing 5% WPI at pH 9 were desolvated with ethanol, and then diluted in HMP solutions at pH 3. Changes in particle size of the HMP-WPI complexes were studied as a function of HMP concentration. Upon dilution of the WPI nanoparticles in 0.05% HMP at pH 3, the average apparent diameter (d(90)) was around 270 nm, and there were no differences with desolvation level. These nanoparticles would undergo coarsening with storage at room temperature. The complexes showed to withstand homogenization and although heating increased aggregation, the particle size of the heated suspensions improved after homogenization. In addition, the suspensions demonstrated higher interfacial pressures (measured by drop tensiometry) compared to the corresponding unprocessed, desolvated or heated WPI solutions, suggesting their employment as surface active ingredients. The encapsulation efficiency of the desolvated WPI suspensions and desolvated WPI-HMP complex suspensions was studied using a model hydrophilic dye. In all cases, appreciable amounts of dye molecule were encapsulated and retained by the nanoparticles during storage at pH 3.


Journal of Oleo Science | 2018

Delivery of Curcumin Using Skim Milk or Oil in Water Emulsions: Effect of the Matrices on Cellular Uptake

Anilda Guri; İbrahim Gülseren; Elena Arranz; Milena Corredig

To enhance the curcumin delivery in a variety of food grade matrices namely spray dried ethanolic curcumin in fresh skim milk (Spray dried Cu-SM), a fresh mixture of ethanolic curcumin and skim milk (Fresh Cu-SM) a powder mixture of curcumin and skim milk powder (Powder Cu-SMP) and oil in water emulsion (Emulsion) were studied. The cellular uptake of curcumin from the respective matrices was studied on Caco-2 cell monolayers. Spray dried Cu-SM showed higher encapsulation efficiency compared to a corresponding Powder Cu-SMP and an oil-in-water emulsion (40% oil) bearing curcumin. Furthermore, ethanolic administration of curcumin in spray dried form enhanced the cellular uptake of curcumin considerably higher than non-ethanolic samples (approx. 4 times). Overall, milk protein based vectors were found to perform better than emulsion samples. These findings highlighted the fact that curcumin uptake may be tailored by fine tuning of curcumin delivery vehicles which highlights possible application of powders as functional foods.


Food Hydrocolloids | 2012

Interactions at the interface between hydrophobic and hydrophilic emulsifiers: Polyglycerol polyricinoleate (PGPR) and milk proteins, studied by drop shape tensiometry

İbrahim Gülseren; Milena Corredig


Food & Function | 2013

Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells

Anilda Guri; İbrahim Gülseren; Milena Corredig


Food Hydrocolloids | 2012

Whey protein nanoparticles prepared with desolvation with ethanol: Characterization, thermal stability and interfacial behavior

İbrahim Gülseren; Yuan Fang; Milena Corredig

Collaboration


Dive into the İbrahim Gülseren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge