Ibrahim Gulyurtlu
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ibrahim Gulyurtlu.
Fuel | 2003
Filomena Pinto; Carlos Franco; Rui Neto André; C. Tavares; Mário Dias; Ibrahim Gulyurtlu; I. Cabrita
Abstract The effect of temperature and of gasification medium was studied, using only air, only steam and mixtures of both as gasification medium, with the aim of optimising co-gasification of coal and wastes. The rise in gasification temperature promoted hydrocarbons further reactions, leading to a decrease in tars and hydrocarbons contents and an increase in H 2 release. Increasing temperature, from 750 to 890 °C, during gasification of a mixture with 60% (w/w) of coal, 20% of pine and 20% of PE wastes, led to a decrease in methane and other hydrocarbons concentration of about 30 and 63%, respectively, whilst hydrogen concentration increased around 70%. Hydrocarbons contents decrease was also achieved by increasing air flow rate, because partial combustion caused by oxygen decreased tars and gaseous hydrocarbons, with even a decrease in heating requirements. However, the presence of air is disadvantageous, because it decreases the higher heating value of the gasification gas, due to nitrogen diluting effect. The rise of steam flow rate has proven to be advantageous, because reforming reactions were favoured, thus hydrocarbons concentrations decreased and hydrogen release increased.
Journal of Analytical and Applied Pyrolysis | 1999
Filomena Pinto; Paula Costa; Ibrahim Gulyurtlu; I. Cabrita
Abstract Accumulation of enormous amounts of plastic waste produced all over the world has negative implications on the environment. Pyrolysis of plastic waste could have an important role in converting this waste into economically valuable hydrocarbons, which can be used either as fuels or as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. The presence of PE (polyethylene) increased alkane content, whilst PS (polystyrene) led to higher aromatic content in the end product. The presence of PP (polypropylene) favoured alkene formation. Therefore, both PS and PP increased the octane number of end product. Therefore, the desired end product can be obtained by adequate blending of plastic wastes.
Journal of Analytical and Applied Pyrolysis | 1999
Filomena Pinto; Paula Costa; Ibrahim Gulyurtlu; I. Cabrita
Abstract Thermolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. The presence of PE (polyethylene) increases alkane content, whilst PS (polystyrene) leads to higher aromatic content in the end product. The alkene formation benefited from the presence of PP (polypropylene). Although, the desired end products can be obtained by adequate blending of plastic wastes, it is not always technically or economically possible to obtain the quality required. The addition of a catalyst could not only improve the quality of products obtained, but could also enable the selectivity of a certain product to be achieved. To study the influence of several catalysts on product distribution, the average plastic waste composition existing in Portuguese municipal solid wastes (68% PE, 16% PP and 16% PS) was chosen. Unfortunately, the catalysts studied in this work, led to results similar to those obtained in their absence.
Waste Management | 2003
M. Helena Lopes; P. Abelha; N. Lapa; José Santos Oliveira; I. Cabrita; Ibrahim Gulyurtlu
Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.
Journal of Hazardous Materials | 2009
Rui Barbosa; N. Lapa; Dulce Boavida; Helena Lopes; Ibrahim Gulyurtlu; Benilde Mendes
The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1+1) of this coal and a stabilized SS (Biogran) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test. Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.
Journal of Colloid and Interface Science | 2014
Margarida Galhetas; Ana S. Mestre; Moisés L. Pinto; Ibrahim Gulyurtlu; Helena Lopes; Ana P. Carvalho
The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons.
Waste Management | 2010
Maria Bernardo; N. Lapa; M. Gonçalves; Rui Barbosa; Benilde Mendes; Filomena Pinto; Ibrahim Gulyurtlu
Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars. The chars were subjected to the leaching test ISO/TS 21268 - 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE). The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars. Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.
Journal of Hazardous Materials | 2009
Maria Bernardo; N. Lapa; Rui Barbosa; Margarida Gonçalves; Benilde Mendes; Filomena Pinto; Ibrahim Gulyurtlu
A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 degrees C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC(50) (30 min) >or=10%), but it was considered to be ecotoxic by the chemical criterion (Ni>or=0.5mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC(50) (30 min)<or=10%. Besides that, residue B was considered to be hazardous according the European legislation (BTEX concentrations higher than 100 ppb). The results indicate that volatile organic contaminants can be present in sufficient amounts in these residues and their eluates to induce ecotoxicity levels. The extraction of the pyrolysis residue with DCM was an efficient method for removing lighter organic contaminants.
Fuel | 1999
Filomena Pinto; Ibrahim Gulyurtlu; Luís S. Lobo; I. Cabrita
Pre-treatment of coal with swelling solvents may enhance coal porosity and thus facilitate catalyst action. The yields of products obtained by coal liquefaction were very much dependent on the type of swelling solvent used. Those studied included ethanol, tetrahydrofurane (THF) and tetrabutylammonium hydroxide (TBAH). After this treatment coal was liquefied using ZnCl2 as catalyst, both alone and mixed with Fe2O3 or ICI 41-6 (Co–Mo). When ethanol was used, the highest coal conversion was obtained, although this solvent had the lowest swelling ratio, probably because a better catalyst impregnation was achieved. On the other hand, although the swelling ratio of TBAH was the greatest, lower overall coal conversions and higher oils yields were observed. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM.
Fuel | 2003
D. Boavida; P. Abelha; Ibrahim Gulyurtlu; I. Cabrita
Abstract Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials plays an important role to achieve conditions for a stable combustion. The form in which the fuel is fed to the combustor makes a significant contribution to achieve desirable combustion performance and differences were observed in results regarding the combustion efficiency and emissions when waste was fed densified or in a fluffy state when it was burned mixed with coal. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150 °C above that of the bed.