Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ida Josefsson is active.

Publication


Featured researches published by Ida Josefsson.


Nature | 2015

Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution

Ph. Wernet; Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Wilson Quevedo; Martin Beye; Simon Schreck; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; W. F. Schlotter; J. J. Turner; Brian Kennedy; Franz Hennies; F.M.F. de Groot; Kelly J. Gaffney; Simone Techert; Michael Odelius; A. Föhlisch

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon–hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.


Journal of Physical Chemistry Letters | 2012

Ab Initio Calculations of X-ray Spectra : Atomic Multiplet and Molecular Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of Transition Metal Complexes

Ida Josefsson; Kristjan Kunnus; Simon Schreck; A. Föhlisch; Frank M. F. de Groot; Philippe Wernet; Michael Odelius

A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra for aqueous Ni(2+) and XA spectra for a polypyridyl iron complex. Our quantum chemical calculations on a high level of accuracy in a post-Hartree-Fock framework give excellent agreement with experiment. This opens the door to reliable and detailed information on chemical interactions and the valence electronic structure in 3d transition-metal complexes also in transient excited electronic states. As we combine a molecular-orbital description with a proper treatment of local atomic electron correlation effects, our calculations uniquely allow, in particular, identifying the influence of interatomic chemical interactions versus intra-atomic correlations in the L-edge X-ray spectra.


Physical Chemistry Chemical Physics | 2013

Collective hydrogen-bond dynamics dictates the electronic structure of aqueous I3−

Ida Josefsson; Susanna K. Eriksson; Niklas Ottosson; Gunnar Öhrwall; Hans Siegbahn; Anders Hagfeldt; Håkan Rensmo; Olle Björneholm; Michael Odelius

The molecular and electronic structures of aqueous I3(-) and I(-) ions have been investigated through ab initio molecular dynamics (MD) simulations and photoelectron (PE) spectroscopy of the iodine 4d core levels. Against the background of the theoretical simulations, data from our I4d PE measurements are shown to contain evidence of coupled solute-solvent dynamics. The MD simulations reveal large amplitude fluctuations in the I-I distances, which couple to the collective rearrangement of the hydrogen bonding network around the I3(-) ion. Due to the high polarizability of the I3(-) ion, the asymmetric I-I vibration reaches partially dissociated configurations, for which the electronic structure resembles that of I2 + I(-). The charge localization in the I3(-) ion is found to be moderated by hydrogen-bonding. As seen in the PE spectrum, these soft molecular vibrations are important for the electronic properties of the I3(-) ion in solution and may play an important role in its electrochemical function.


Journal of Physical Chemistry B | 2013

From ligand fields to molecular orbitals: Probing the local valence electronic structure of Ni2+ in aqueous solution with resonant inelastic X-ray scattering.

Kristjan Kunnus; Ida Josefsson; Simon Schreck; Wilson Quevedo; Piter S. Miedema; Simone Techert; F.M.F. de Groot; Michael Odelius; Philippe Wernet; A. Föhlisch

Bonding of the Ni(2+)(aq) complex is investigated with an unprecedented combination of resonant inelastic X-ray scattering (RIXS) measurements and ab initio calculations at the Ni L absorption edge. The spectra directly reflect the relative energies of the ligand-field and charge-transfer valence-excited states. They give element-specific access with atomic resolution to the ground-state electronic structure of the complex and allow quantification of ligand-field strength and 3d-3d electron correlation interactions in the Ni(2+)(aq) complex. The experimentally determined ligand-field strength is 10Dq = 1.1 eV. This and the Racah parameters characterizing 3d-3d Coulomb interactions B = 0.13 eV and C = 0.42 eV as readily derived from the measured energies match very well with the results from UV-vis spectroscopy. Our results demonstrate how L-edge RIXS can be used to complement existing spectroscopic tools for the investigation of bonding in 3d transition-metal coordination compounds in solution. The ab initio RASPT2 calculation is successfully used to simulate the L-edge RIXS spectra.


Structural Dynamics | 2016

Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH

Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Simon Schreck; Wilson Quevedo; Martin Beye; Christian Weniger; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; Kelly J. Gaffney; W. F. Schlotter; J. J. Turner; Brian K. Kennedy; Franz Hennies; F.M.F. de Groot; Simone Techert; Michael Odelius; Ph. Wernet; A. Föhlisch

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the 1A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from 1B2 to 3B2 is rationalized by the proposed 1B2 → 1A1 → 3B2 mechanism. Ultrafast ligation of the 1B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the 3B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via 1B2 → 1A1 → 1A′ Fe(CO)4EtOH pathway and the time scale of the 1A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.


Physical Chemistry Chemical Physics | 2016

Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT

Susanna K. Eriksson; Ida Josefsson; Hanna Ellis; Anna Amat; Mariachiara Pastore; Johan Oscarsson; Rebecka Lindblad; Anna Eriksson; Erik M. J. Johansson; Gerrit Boschloo; Anders Hagfeldt; Simona Fantacci; Michael Odelius; Håkan Rensmo

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.


Chemistry: A European Journal | 2015

Solvent-dependent structure of the I3 - ion derived from photoelectron spectroscopy and Ab initio molecular dynamics simulations

Naresh K. Jena; Ida Josefsson; Susanna Kaufmann Eriksson; Anders Hagfeldt; Hans Siegbahn; Olle Björneholm; Håkan Rensmo; Michael Odelius

Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I3(-) ion in relation to X-ray photoelectron spectroscopy (XPS). Simulations show that hydrogen-bond rearrangement in the solvation shell is coupled to intramolecular bond-length asymmetry in the I3(-) ion. By a combination of charge analysis and I 4 d core-level XPS measurements, the mechanism of the solvent-induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent-dependent structure of the I3(-) ion, and the geometric structure has been correlated with the electronic structure.


Journal of Physical Chemistry B | 2014

Solvent Dependence of the Electronic Structure of I- and I-3(-)

Susanna K. Eriksson; Ida Josefsson; Niklas Ottosson; Gunnar Öhrwall; Olle Björneholm; Hans Siegbahn; Anders Hagfeldt; Michael Odelius; Håkan Rensmo

We present synchrotron-based I4d photoelectron spectroscopy experiments of solutions from LiI and LiI3 in water, ethanol, and acetonitrile. The experimentally determined solvent-induced binding energy shifts (SIBES) for the monatomic I(–) anion are compared to predictions from simple Born theory, PCM calculations, as well as multiconfigurational quantum chemical spectral calculations from geometries obtained through molecular dynamics of solvated clusters. We show that the SIBES for I(–) explicitly depend on the details of the hydrogen bonding configurations of the solvent to the I(–) and that static continuum models such as the Born model cannot capture the trends in the SIBES observed both in experiments and in higher-level calculations. To extend the discussion to more complex polyatomic anions, we also performed experiments on I3(–) and I(–)/I3(–) mixtures in different solvents and the results are analyzed in the perspective of SIBES. The experimental SIBES values indicate that the solvation effects even for such similar anions as I(–) and I3(–) can be rather different in nature.


New Journal of Physics | 2016

Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Simon Schreck; Wilson Quevedo; Martin Beye; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; Kelly J. Gaffney; W. F. Schlotter; J. J. Turner; Brian Kennedy; Franz Hennies; Simone Techert; Philippe Wernet; Michael Odelius; A. Föhlisch

Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given - which will be covered experimentally by upcoming transform-limited x-ray sources. (Less)


Physical Chemistry Chemical Physics | 2015

Density functional investigation and some optical experiments on dye-sensitized quantum dots

Kalpna Jain; Sreejith Kaniyankandy; Shyam Kishor; Ida Josefsson; Hirendra N. Ghosh; Khundrakpam S. Singh; Sumit Mookerjee; Michael Odelius; Lavanya M. Ramaniah

Dye-sensitized quantum dots (QDs) are promising candidates for dye-sensitized solar cells (DSSCs). Here, we report steady state (absorption and photoluminescence) optical measurements on several sizes of CdS QDs ligated with Coumarin 343 dye (C-343) and two different solvents, viz., chloroform and toluene. We further report detailed first principles density functional theory and time-dependent density functional theory studies of the geometric, electronic and optical (absorption and emission) properties of three different sized capped QDs, ligated with C-343 dye. The absorption spectrum shows a QD-size-independent peak, and another peak which shifts to blue with decrease in QD size. The first peak is found to arise from the dye molecule and the second one from the QD. Charge transfer using natural transition orbitals (NTOs) is found to occur from dye-to-QDs and is solvent-dependent. In the emission spectra, the luminescence intensity of the dye is quenched by the addition of the QD indicating a strong interaction between the QD and the dye.

Collaboration


Dive into the Ida Josefsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Föhlisch

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Schreck

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilson Quevedo

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

Martin Beye

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

Ph. Wernet

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirko Scholz

Folkwang University of the Arts

View shared research outputs
Researchain Logo
Decentralizing Knowledge