Ida Rosenkrands
Statens Serum Institut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ida Rosenkrands.
Microbiology | 1998
Fransois-Xavier Berthet; Peter Birk Rasmussen; Ida Rosenkrands; Peter Andersen; Brigitte Gicquel
The early secreted antigenic target 6 kDa protein (ESAT-6) is a potent T-cell protein antigen synthesized by Mycobacterium tuberculosis. Its corresponding gene (esat-6) is located in RD1, a 10 kb DNA region deleted in the attenuated tuberculosis vaccine strain Mycobacterium bovis BCG. The promoter region of M. tuberculosis esat-6 was cloned and characterized. A new gene, designated lhp and cotranscribed with esat-6, was identified. Moreover, computer searches in the M. tuberculosis genome identified 13 genes related to the lhp/esat-6 operon, defining a novel gene family. The transcription initiation sites of the lhp/esat-6 operon were mapped using M. tuberculosis RNA. The corresponding promoter signals were not recognized in Mycobacterium smegmatis, in which transcription of lhp/esat-6 is initiated at different locations. The M. tuberculosis lhp gene product was identified as CFP-10, a low-molecular-mass protein found in the short-term culture filtrate. These results show that the genes encoding CFP-10 and ESAT-6 are transcribed together in M. tuberculosis and that both code for small exported proteins.
Science | 2009
Vadim Makarov; Giulia Manina; Katarína Mikušová; Ute Möllmann; Olga Ryabova; Brigitte Saint-Joanis; Neeraj Dhar; Maria Rosalia Pasca; Silvia Buroni; Anna Paola Lucarelli; Anna Milano; Edda De Rossi; Martina Belanová; Adela Bobovská; Petronela Dianišková; Jana Korduláková; Claudia Sala; Elizabeth Fullam; Patricia Schneider; John D. McKinney; Priscille Brodin; Thierry Christophe; Simon J. Waddell; Philip D. Butcher; Jakob Albrethsen; Ida Rosenkrands; Roland Brosch; Vrinda Nandi; Sheshagiri Gaonkar; Radha Shandil
Ammunition for the TB Wars Tuberculosis is a major human disease of global importance resulting from infection with the air-borne pathogen Mycobacterium tuberculosis, which is becoming increasingly resistant to all available drugs. An antituberculosis benzothiazinone compound kills mycobacterium in infected cells and in mice. Makarov et al. (p. 801) have identified a sulfur atom and nitro residues important for benzothiazinones activity and used genetic methods and biochemical analysis to identify its target in blocking arabinogalactan biosynthesis during cell-wall synthesis. The compound affects the same pathway as ethambutol, and thus a benzothiazinone drug has the potential to become an important part of treatment of drug-resistant disease and, possibly, replace the less effective ethambutol in the primary treatment of tuberculosis. An isomerase required for cell-wall synthesis is a target for an alternative drug lead for tuberculosis treatment. New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.
Infection and Immunity | 2000
Lise Ostergaard Brandt; Martin J. Elhay; Ida Rosenkrands; Erik B. Lindblad; Peter Andersen
ABSTRACT The ESAT-6 antigen from Mycobacterium tuberculosis is a dominant target for cell-mediated immunity in the early phase of tuberculosis (TB) in TB patients as well as in various animal models. The purpose of our study was to evaluate the potential of ESAT-6 in an experimental TB vaccine. We started out using dimethyl dioctadecylammonium bromide (DDA), an adjuvant which has been demonstrated to be efficient for the induction of cellular immune responses and has been used successfully before as a delivery system for TB vaccines. Here we demonstrate that, whereas immune responses to both short-term-culture filtrate and Ag85B are efficiently induced with DDA, this adjuvant was inefficient for the induction of immune responses to ESAT-6. Therefore, we investigated the modulatory effect of monophosphoryl lipid A (MPL), an immunomodulator which in different combinations has demonstrated strong adjuvant activity for both cellular and humoral immune responses. We show in the present study that vaccination with ESAT-6 delivered in a combination of MPL and DDA elicited a strong ESAT-6-specific T-cell response and protective immunity comparable to that achieved withMycobacterium bovis BCG.
The Journal of Infectious Diseases | 1999
Pernille Ravn; Abebech Demissie; Tewodros Eguale; Hailu Wondwosson; David Lein; Hanady A. Amoudy; Abu Salim Mustafa; Axel Kok Jensen; Arne Holm; Ida Rosenkrands; Fredrik Oftung; Joseph Olobo; Fordham von Reyn; Peter Andersen
Human T cell responses to ESAT-6 and eight synthetic overlapping peptides were investigated in tuberculosis (TB) patients and control subjects from regions of high and low endemicity for TB. ESAT-6 was recognized by 65% of all tuberculin purified protein derivative-responsive TB patients, whereas only 2 of 29 bacille Calmette-Guérin-vaccinated Danish healthy donors recognized this molecule. In Ethiopia, a high frequency (58%) of healthy contacts of TB patients recognized ESAT-6. All of the peptides were recognized by some donors, indicating that the molecule holds multiple epitopes. Danish and Ethiopian patients differed in the fine specificity of their peptide responses. Recognition of the C-terminal region (aa 72-95) was predominant in Danish patients, whereas recognition of aa 42-75 was predominant in Ethiopia. The relationship of these differences to the distribution of HLA types in the two populations is discussed. This study demonstrates that ESAT-6 is frequently recognized during early infection and holds potential as a component of a future TB-specific diagnostic reagent.
Journal of Immunology | 2009
Thomas Lindenstrøm; Else Marie Agger; Karen Smith Korsholm; Patricia A. Darrah; Claus Aagaard; Robert A. Seder; Ida Rosenkrands; Peter Andersen
Improved vaccines capable of promoting long-term cellular immunity are urgently required for a number of diseases that remain global health problems. In the present study, we demonstrate that a tuberculosis subunit vaccine, Ag85B-ESAT-6/CAF01 (where ESAT-6 is early secreted antigenic target of 6 kDa and CAF01 is cationic adjuvant formulation 01), induces very robust memory CD4 T cell responses that are maintained at high levels for >1 year postvaccination. This long-term, vaccine-induced memory response protects against a challenge with Mycobacterium tuberculosis at levels that are comparable to or better than those of bacillus Calmette-Guérin. Characterization of the CD4 memory T cells by multicolor flow cytometry demonstrated that the long-lived memory population consisted almost exclusively of TNF-α+IL-2+ and IFN-γ+TNF-α+IL-2+ multifunctional T cells. In addition, memory cells isolated >1 year postvaccination maintained a strong, vaccine-specific proliferative potential. Long-term memory induced by the BCG vaccine contained fewer multifunctional T cells and was biased toward effector cells mainly of the TNF-α+IFN-γ+-coexpressing subset. Ag85B-ESAT-6/CAF01 vaccination very efficiently sustained multifunctional CD4 T cells that accumulated at the site of infection after M. tuberculosis challenge, whereas the response in unvaccinated animals was characterized by CD4 effector T cells. Our data demonstrate that adjuvanted subunit vaccines can promote long-term protective immune responses characterized by high levels of persisting multifunctional T cells and that the quality and profile of this response is sustained postinfection.
Infection and Immunity | 2000
Rikke Louise Vinther Skjøt; Thomas Oettinger; Ida Rosenkrands; Pernille Ravn; Inger Brock; Susanne Jacobsen; Peter Andersen
ABSTRACT Culture filtrate from Mycobacterium tuberculosiscontains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtrate. The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195–3203, 1998), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested in cultures of peripheral blood mononuclear cells from human tuberculosis (TB) patients, Mycobacterium bovisBCG-vaccinated donors, and nonvaccinated donors. The two ESAT-6 family members, TB10.4 and CFP10, were very strongly recognized and induced gamma interferon release at the same level (CFP10) as or at an even higher level (TB10.4) than ESAT-6. The non-ESAT-6 family member, TB7.3, for comparison, was recognized at a much lower level. CFP10 was found to distinguish TB patients from BCG-vaccinated donors and is, together with ESAT-6, an interesting candidate for the diagnosis of TB. The striking immunodominance of antigens within the ESAT-6 family is discussed, and hypotheses are presented to explain this targeting of the immune response during TB infection.
PLOS ONE | 2008
Else Marie Agger; Ida Rosenkrands; Jon Hansen; Karima Brahimi; Brian S. Vandahl; Claus Aagaard; Kerstin Werninghaus; Carsten J. Kirschning; Roland Lang; Dennis Christensen; Michael Theisen; Frank Follmann; Peter Andersen
Background It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. Methods and Findings Herein, we describe a cationic adjuvant formulation (CAF01) consisting of DDA as a delivery vehicle and synthetic mycobacterial cordfactor as immunomodulator. CAF01 primes strong and complex immune responses and using ovalbumin as a model vaccine antigen in mice, antigen specific cell-mediated- and humoral responses were obtained at a level clearly above a range of currently used adjuvants (Aluminium, monophosphoryl lipid A, CFA/IFA, Montanide). This response occurs through Toll-like receptor 2, 3, 4 and 7-independent pathways whereas the response is partly reduced in MyD88-deficient mice. In three animal models of diseases with markedly different immunological requirement; Mycobacterium tuberculosis (cell-mediated), Chlamydia trachomatis (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge. Conclusion CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection.
Vaccine | 2010
Jaap T. van Dissel; Sandra M. Arend; Corine Prins; Peter Bang; Pernille N. Tingskov; Karen Lingnau; Jan Nouta; Michèl R. Klein; Ida Rosenkrands; Tom H. M. Ottenhoff; Ingrid Kromann; T. Mark Doherty; Peter Andersen
Though widely used, the BCG vaccine has had little apparent effect on rates of adult pulmonary tuberculosis. Moreover, the risk of disseminated BCG disease in immunocompromised individuals means that improved TB vaccines ideally need to be able to efficiently prime mycobacterially-naïve individuals as well as boost individuals previously vaccinated with BCG. Protective immunity against Mycobacterium tuberculosis is thought to depend on the generation of a Th1-type cellular immune response characterized by interferon-gamma (IFN-gamma) production. In the present study, we monitored safety and IFN-gamma responses in healthy TB-naïve humans receiving an entirely novel vaccine, composed of the fusion protein Ag85B-ESAT-6, administered at 0 and 2 months either as recombinant protein alone or combined with two concentrations of the novel adjuvant IC31. Vaccination did not cause local or systemic adverse effects besides transient soreness at the injection site, but it elicited strong antigen-specific T cell responses against H1 and both the Ag85B and the ESAT-6 components. These strong responses persisted through 2.5 years of follow-up, indicating the induction of a substantial memory response in the vaccine recipients.
Expert Review of Vaccines | 2007
Dennis Christensen; Karen Smith Korsholm; Ida Rosenkrands; Thomas Lindenstrøm; Peter Andersen; Else Marie Agger
Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.
Electrophoresis | 2000
Ida Rosenkrands; Karin Weldingh; Susanne Jacobsen; Christina Veggerby Hansen; Walter Florio; Isabella Gianetri; Peter Andersen
Mycobacterium tuberculosis is the infectious agent giving rise to human tuberculosis. The entire genome of M. tuberculosis, comprising approximately 4000 open reading frames, has been sequenced. The huge amount of information released from this project has facilitated proteome analysis of M. tuberculosis. Two‐dimensional polyacrylamide gel electrophoresis (2‐D PAGE) was applied to fractions derived from M. tuberculosis culture filtrate, cell wall, and cytosol, resulting in the resolution of 376, 413, and 395 spots, respectively, in silver‐stained gels. By microsequencing and immunodetection, 38 culture filtrate proteins were identified and mapped, of which 12 were identified for the first time. In the same manner, 23 cell wall proteins and 19 cytosol proteins were identified and mapped, with 9 and 10, respectively, being novel proteins. One of the novel proteins was not predicted in the genome project, and for four of the identified proteins alternative start codons were suggested. Fourteen of the culture filtrate proteins were proposed to possess signal sequences. Seven of these proteins were microsequenced and the N‐terminal sequences obtained confirmed the prediction. The data presented here are an important complement to the genetic information, and the established 2‐D PAGE maps (also available at: www.ssi.dk/publichealth/tbimmun) provide a basis for comparative studies of protein expression.