Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ida S. Owens is active.

Publication


Featured researches published by Ida S. Owens.


Pharmacogenetics | 1997

Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implications.

Marco Ciotti; Aldo Marrone; Christine Potter; Ida S. Owens

Two missense mutations were uncovered in the UGT1A6 (HLUG P1) cDNA which codes for a human phenol-metabolizing UDP-glucuronosyltransferase. The mutant and a wild-type UGT1A6 cDNAs were isolated from a custom synthesized human liver lambda Zap cDNA library. Both an A to G transition at nucleotide 541 (T181 A) and an A to C transversion at nucleotide 552 (R184S) occurred in exon 1 of the UGT1A6 (UGT1F) gene at the UGT1 locus. The two mutations on a single allele created a heterozygous genotype. Newly created BsmI and BsoFI sites at the T181 A and R184S locations, respectively, were confirmed by endonuclease treatment of PCR-generated DNA using the donor-liver genomic DNA as template. Screens with endonuclease treatment showed that 33/98 DNA samples were heterozygous with both mutations on one allele. One other individual also carried the R184S mutation on the second allele. Wild-type UGT1A6 generated a broad plateau of activity from pH 5.0 to pH 8.0 with certain experimental phenols, while activity was 1.3-2.5-fold higher at pH 6.4 than at pH 7.2 for others. UGT1A6*2 (181 A+ and 184S+) metabolized 4-nitrophenol, 4-tert-butylphenol, 3-ethylphenol/4-ethylphenol, 4-hydroxycoumarin, butylated hydroxy anisole and butylated hydroxy toluene, with the pH 6.4 preference, at only 27-75% of the rate of the wild-type isozyme whereas 1-naphthol, 3-iodophenol, 7-hydroxycoumarin, and 7-hydroxy-4-methylcoumarin were metabolized at essentially the normal level. Furthermore, UGT1A6*2 metabolized 3-O-methyl-dopa and methyl salicylate at 41-74% of that of the wild-type, and a series of beta-blockers at 28-69% of the normal level. This evidence suggests that the UGT1A6 enzyme activity is affected by different amino acids depending upon the substrate selection.


Pharmacogenetics | 1992

The novel bilirubin/phenol UDP-glucuronosyltransferase UGT1 gene locus: implications for multiple nonhemolytic familial hyperbilirubinemia phenotypes.

Ida S. Owens; Joseph K. Ritter

At least three types of congenital nonhemolytic unconjugated hyperbilirubinemias, including the rare Crigler-Najjar (CN) diseases (Types I or II) and Gilberts syndrome (affecting 6% of the population) are associated with either absent or reduced hepatic UDP-glucuronosyltransferase (transferase) activity towards the potentially toxic endogenous acceptor, bilirubin. Here, we review the biochemical studies associated with these deficiencies. Accumulated evidence from studies with an animal model of CN Type I syndrome, the Gunn strain of hyperbilirubinemic rats, suggested that multiple isozymes are absent. These confounding observations have been clarified by a flurry of reports which have revealed the molecular basis for the complex disease phenotype in the Gunn rat and by the isolation and description of a novel human gene complex, UGT1, which encodes multiple and independently-regulated transferase isozymes that contain identical carboxyl terminal regions (246 amino acids). Finally, we discuss the implications of the gene organization and genetic defects determined for four different CN Type I individuals as a basis for a model which explains the inheritance pattern and genotypes of other familial unconjugated hyperbilirubinemias.


Biochimica et Biophysica Acta | 1998

Coding defect and a TATA box mutation at the bilirubin UDP-glucuronosyltransferase gene cause Crigler-Najjar type I disease

M. Ciotti; F. Chen; F.F. Rubaltelli; Ida S. Owens

Mutations at the bilirubin UDP-glucuronosyltransferase (transferase) gene in a severely hyperbilirubinemic Crigler-Najjar (CN) type I individual was compared with that in a moderately hyperbilirubinemic CN II individual. The CN-I (CF) patient in this study sustained a TATA box insertional mutation which was paired with a coding defect at the second allele, unlike all coding defects previously seen in CN-I patients. The sequence of the mutant TATA box, [A(TA)8A], also seen in the CN-II patient, was compared with that at the wild-type box, [A(TA)7A]. Transcriptional activity with [A(TA)8A] was 10-15% that with the wild-type box when present in the -1.7 kb upstream regulatory region (URR) of the bilirubin transferase UGT1A1 gene which was fused to the chloramphenicol acetyl transferase reporter gene, pCAT 1.7H, and transfected into HepG2 cells. Also, a construct with a TA deletion, [A(TA)6A], was prepared and used as a control; transcriptional activity was 65% normal. The coding region defect, R336W, seen in CF (CN-I) was placed in the bilirubin transferase UGT1A1 [HUG-Br1] cDNA, and its corresponding protein was designated UGT1A1*32. The UGT1A1*32 protein supported 0-10% normal bilirubin glucuronidation when expressed in COS-1 cells. The I294T coding defect seen at the second allele in SM (CN-II) generated the UGT1A1*33 mutant protein which supported 40-55% normal activity with a normal Km (2.5 microM) for bilirubin. The hyperbilirubinemia seen in SM decreased in response to phenobarbital treatment, unlike that seen in CF. Parents of the patients were carriers of the respective mutations uncovered in the offspring. The TATA box mutation paired with a deleterious missense mutation is, therefore, completely repressive in the CN-I patient, and is responsible for a lethal genotype/phenotype; but when homozygous, i.e. paired with itself, as previously reported in the literature, it is far less repressive and generates the mild Gilberts phenotype.


Journal of Biological Chemistry | 2004

Gastrointestinally Distributed UDP-glucuronosyltransferase 1A10, Which Metabolizes Estrogens and Nonsteroidal Anti-inflammatory Drugs, Depends upon Phosphorylation*

Nikhil K. Basu; Shigeki Kubota; Meselhy R. Meselhy; Marco Ciotti; Bhabadeb Chowdhury; Masao Hartori; Ida S. Owens

Among gastrointestinal distributed isozymes encoded at the UGT1 locus, UDP-glucuronosyltransferase 1A10 (UGT1A10) metabolizes a number of important chemicals. Similar to broad conversion of phytoestrogens (Basu, N. K., Ciotti, M., Hwang, M. S., Kole, L., Mitra, P. S., Cho, J. W., and Owens, I. S. (2004) J. Biol. Chem. 279, 1429–1441), UGT1A10 metabolized estrogens and their derivatives, whereas UGT1A1, -1A3, -1A7, and -1A8 differentially exhibited reduced activity toward the same. UGT1A10 compared with UGT1A7, -1A8, and -1A3 generally exhibited high activity toward acidic nonsteroidal anti-inflammatory drugs and natural benzaldehyde derivatives, while UGT1A3 metabolized most efficiently aromatic transcinnamic acids known to be generated from flavonoid glycosides by microflora in the lower gastrointestinal tract. Finally UGT1A10, -1A7, -1A8, and -1A3 converted plant-based salicylic acids; methylsalicylic acid was transformed at high levels, and acetylsalicylic (aspirin) and salicylic acid were transformed at moderate to low levels. Atypically UGT1A10 transformed estrogens between pH 6 and 8 but acidic structures preferentially at pH 6.4. Furthermore evidence indicates UGT1A10 expressed in COS-1 cells depends upon phosphorylation; UGT1A10 versus its single, double, and triple mutants at three predicted protein kinase C phosphorylation sites incorporated [33P]-orthophosphate and showed a progressive decrease with no detectable label or activity for the triple T73A/T202A/S432G-1A10 mutant. Single and double mutants revealed either null/full activity or null/additive activity, respectively. Additionally UGT1A10-expressing cultures glucuronidated 17β-[14C]estradiol, whereas cultures containing null mutants at protein kinase C sites showed no estrogen conversion. Importantly UGT1A10 in cells supported 10-fold higher glucuronidation of 17β-estradiol than UGT1A1. In summary, our results suggest gastrointestinally distributed UGT1A10 is important for detoxifying estrogens/phytoestrogens and aromatic acids with complementary activity by UGT1A7, -1A8, -1A3, and/or -1A1 evidently dependent upon phosphorylation.


Archives of Biochemistry and Biophysics | 1973

Genetic expression of aryl hydrocarbon hydroxylase induction: VI. Control of other aromatic hydrocarbon-inducible mono-oxygenase activities at or near the same genetic locus

Daniel W. Nebert; Noreen Considine; Ida S. Owens

Abstract When mice are administered aromatic hydrocarbons, the induction of aryl hydrocarbon (benzo[ a ]pyrene) hydroxylase, p -nitroanisole O -demethylase, 7-ethoxycoumarin O -deethylase, and 3-methyl-4-methylaminoazobenzene N -demethylase activities—all membrane-bound mono-oxygenases having cytochrome P 450 associated with their active sites—is associated with the same genetic locus or with closely linked loci; we have previously proposed that this genetic region be designated the Ah locus for aromatic hydrocarbon responsiveness. Expression of these four inducible enzyme activities occurs as a single autosomal dominant trait in offspring from a genetic cross between inbred C57BL/6N and DBA/2N mice and from the appropriate backcrosses and intercross. There are no striking differences in relative thermolability or ontogenetic expression among these four closely linked aromatic hydrocarbon-induced mono-oxygenase activities. All four of these microsomal enzyme activities exist in two forms—one predominantly present in control or aromatic hydrocarbon-treated genetically nonresponsive mice and the other predominantly present in aromatic hydrocarbon-treated genetically responsive mice; the latter form is preferentially inhibited in vitro by such compounds as α-naphthoflavone. Whether a single induction-specific protein or a group of induction-specific proteins is associated with the Ah locus remains uncertain. The expression of aminopyrine N -demethylase, d -benzphetamine N -demethylase, NADPH-cytochrome c reductase, and NADPH-cytochrome P 450 reductase activities in aromatic hydrocarbon-treated genetically responsive and nonresponsive mice is not correlated with the Ah locus.


Biochemical and Biophysical Research Communications | 2003

Evidence for phosphorylation requirement for human bilirubin UDP-glucuronosyltransferase (UGT1A1) activity

Nikhil K. Basu; Labanyamoy Kole; Ida S. Owens

Our discovery of rapid down-regulation of human bilirubin UDP-glucuronosyltransferase (UGT) in colon cell lines that was transient and irreversible following curcumin- and calphostin-C-treatment, respectively, suggested phosphorylation event(s) were involved in activity. Likewise, bilirubin-UGT1A1 expressed in COS-1 cells was inhibited by curcumin and calphostin-C. Because calphostin-C is a highly specific protein kinase C (PKC) inhibitor, we examined and found 4 to 5 predicted PKC phosphorylation sites in 11 UGTs examined. UGT1A1 incorporated [33P]orthophosphate, which was inhibited by calphostin-C. Also triple mutant, T75A/T112A/S435G-UGT1A1, at predicted PKC sites failed to incorporate [33P]orthophosphate. Individual or double mutants exhibited dominant-negative, additive, or no effect, while the triple mutant retained 10-15% activity towards bilirubin and two xenobiotics. Compared to wild-type, S435G and T112A/S435G shifted pH-optimum for eugenol, but not for bilirubin or anthraflavic acid, toward alkaline and acid conditions, respectively. This represents the first evidence that a UGT isozyme requires phosphorylation for activity.


Biochemical and Biophysical Research Communications | 1984

Cleavage of nascent UDP glucuronosyltransferase from rat liver by dog pancreatic microsomes

Peter I. Mackenzie; Ida S. Owens

Antibody to mouse UDP glucuronosyltransferase, previously shown to cross-react with rat transferase [1], immunoadsorbed 3 electrophoretically distinct transferase forms from the microsomes of untreated and phenobarbital-treated rats and 4 forms from 3-methylcholanthrene treated animals. The forms from phenobarbital-treated or control animals ranged in molecular weights from 49,000 to 52,000 daltons, and those from 3-methylcholanthrene-treated rats ranged from 51,000 to 57,000 daltons. The intensity of the electrophoretic bands indicated that the levels of at least two forms were increased by the administration of either compound. In contrast, only a 52,000-dalton electrophoretic band was observed after immunoadsorption of in vitro translated products using poly(A) RNA isolated from either control, phenobarbital-, or 3-methylcholanthrene-treated rats. When dog pancreatic microsomes were included in the in vitro translation assay for either of the poly(A) RNA preparations, part of the 52,000-dalton band remained and a new band of about 50,000 daltons was generated. This processed transferase form(s) appeared to be inserted into or sequestered by the microsomes. These results indicate that some of the electrophoretic variants of rat liver transferase arise by posttranslational modifications and that at least one rat transferase form undergoes proteolytic cleavage of an approximate 2,000-dalton peptide fragment during insertion into the membrane.


Archives of Biochemistry and Biophysics | 1984

Purification and immunochemical characterization of a low-pI form of UDP glucuronosyltransferase from mouse liver

Peter I. Mackenzie; Leonard M. Hjelmeland; Ida S. Owens

A liver UDP glucuronosyltransferase (GT) enzyme from either phenobarbital- or 3-methylcholanthrene-treated C57BL/6N mice was isolated by phenyl-Sepharose, DEAE-ion exchange, and UDP hexanolamine chromatographic steps. This enzyme had a broad substrate specificity and was mainly responsible for the microsomal capacity to glucuronidate testosterone, 1-naphthol, and morphine. This UDP glucuronosyltransferase ( GTM1 ) appeared to be at least 95% homogeneous and had a subunit molecular weight of 51,000 using sodium dodecyl sulfate-polyacrylamide gel and two-dimensional gel electrophoreses. Antibodies prepared against the purified protein developed a single immunoprecipitin line by double-diffusion analysis with purified antigen and with solubilized microsomes from both control and drug-induced C57BL/6N and DBA/2N mice. A precipitin line was also observed with microsomal proteins which isoelectrofocused at approximately pH 6.7, but not with those which isoelectrofocused at approximately pH 8.5. GTM1 was, therefore, designated at low-pI form. Immunopurified antibody preferentially inhibited and immunoprecipitated GT activities toward testosterone, 1-naphthol, and morphine. To a lesser extent, activities toward phenolphthalein, 3-hydroxybenzo[a]pyrene, and estrone were inhibited while activities toward 4-nitrophenol and 4-methylumbelliferone were not affected. All activities, however, were immunoadsorbed in the presence of protein A-Sepharose. This observation can be explained by the following results. Immunoprecipitates from labeled microsomes contained primarily a 51,000-Da protein. When the immune complexes were adsorbed with protein A-Sepharose, a 54,000-Da protein as well as the expected 51,000-Da GTM1 was detected. This 54,000-Da protein was associated with the glucuronidation of 3-hydroxybenzo[a]pyrene and 4-nitrophenol, and was designated GTM2 .


American Journal of Medical Genetics | 1997

Genetic defects at the UGT1 locus associated with Crigler-Najjar type I disease, including a prenatal diagnosis

Marco Ciotti; Ridwan Obaray; Martin G. Martin; Ida S. Owens

Characterization of the UGT1 gene complex locus encoding both multiple bilirubin and phenol UDP-glucuronosyltransferases (transferases) has been critical in identifying mutations in the bilirubin isoforms. This study utilizes this information to identify the bases of deficient bilirubin UDP-glucuronosyltransferase activity encoded by the UGT1A gene for the major bilirubin isozyme, HUG-Br1, in 3 Crigler-Najjar type I individuals and the genotype of an at-risk unborn sibling of one patient. A homozygous and heterozygous two-base mutation (CCC to CGT) created the HUG-Br1P387R mutant of the major bilirubin transferase in 2 different Crigler-Najjar type I patients, B.G. and G.D., respectively. Both parents of B.G. and his unborn sibling, J.G., were determined to be carriers of the P387R mutation. G.D. also contains the CAA to TAA nonsense mutation (G1n357st). Y.A. has a homozygous CT deletion in codons 40/41. The HUG-Br1P387R mutant protein was totally inactive at the major pH optimum (6.4), but retained 26% normal activity at the minor pH optimum (7.6), which was 5.4% of the combined activities measured at the two pH values.


Biochemical Pharmacology | 1983

Differences in udp-glucuronosyltransferase activities in congenic inbred rats homozygous and heterozygous for the jaundice locus

Peter I. Mackenzie; Ida S. Owens

The genic transfer of the jaundice locus (jj) from the Gunn rat into the inbred RHA/++ rat produced congenic inbred homozygous RHA/jj rats which lacked detectable bilirubin UDP-glucuronosyltransferase activity. Congenic inbred RHA/j+ rats contained half the activity for bilirubin of the RHA/++ strain. Constitutive activities for glucuronidation of sixteen substrates of twenty-one tested were inherited additively. Approximately seven groups were discernible based on the defect in activity for these substrates in the RHA/jj strain. Activity for 1-hydroxybenzo[a]pyrene was, after that for bilirubin, the most severely reduced (188-fold), while no differences in the glucuronidation of three androgens and of the 6-hydroxy-, 10-hydroxy-, and 11-hydroxybenzo[a]pyrenes were observed. The conjugation of other substrates was affected to an intermediate extent. Most of the twenty-one glucuronidating activities were induced by phenobarbital in the RHA/jj strain as well as in the RHA/++ and RHA/j+ strains. Activities for 9-hydroxybenzo[a]pyrene and for the 2-hydroxy- and 4-hydroxybiphenyls were induced such that the defect was overcome, and the RHA/jj had the same level of activity as the RHA/++ strain. Cytochrome p-450 content and cytochrome c reductase and aminopyrine demethylase activities were unaffected in the congenic strains. Cytochrome p-450 content and cytochrome c reductase activity were induced approximately 2.5- and 2.0-fold, respectively, by phenobarbital while aminopyrine demethylase activity was induced about 30% in each strain. The congenic inbred rats should provide a stable and reproducible genetic model for studying defective UDP-glucuronosyltransferase specified by the jaundice (jj) locus.

Collaboration


Dive into the Ida S. Owens's collaboration.

Top Co-Authors

Avatar

Nikhil K. Basu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel W. Nebert

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Marco Ciotti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Joseph K. Ritter

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Peter I. Mackenzie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mousumi Basu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rajat Banerjee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shigeki Kubota

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Partha Mitra

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge