Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iddo Friedberg is active.

Publication


Featured researches published by Iddo Friedberg.


Cell | 2004

Protein tyrosine phosphatases in the human genome.

Andres Alonso; Joanna Sasin; Nunzio Bottini; Ilan Friedberg; Iddo Friedberg; Andrei L. Osterman; Adam Godzik; Tony Hunter; Jack E. Dixon; Tomas Mustelin

Tyrosine phosphorylation is catalyzed by protein tyrosine kinases, which are represented by 90 genes in the human genome. Here, we present the set of 107 genes in the human genome that encode members of the four protein tyrosine phosphatase (PTP) families. The four families of PTPases, their substrates, structure, function, regulation, and the role of these enzymes in human disease will be discussed.


Bioinformatics | 2009

Biopython: freely available Python tools for computational molecular biology and bioinformatics.

Peter J. A. Cock; Tiago Antao; Jeffrey T. Chang; Brad Chapman; Cymon J. Cox; Andrew Dalke; Iddo Friedberg; Thomas Hamelryck; Frank Kauff; Bartosz Wilczyński; Michiel J. L. de Hoon

Summary: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Availability: Biopython is freely available, with documentation and source code at www.biopython.org under the Biopython license. Contact: All queries should be directed to the Biopython mailing lists, see www.biopython.org/wiki/[email protected].


PLOS Computational Biology | 2010

A Primer on Metagenomics

John Wooley; Adam Godzik; Iddo Friedberg

Metagenomics is a discipline that enables the genomic study of uncultured microorganisms. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats are expanding and transforming our view of the microbial world. Distilling meaningful information from the millions of new genomic sequences presents a serious challenge to bioinformaticians. In cultured microbes, the genomic data come from a single clone, making sequence assembly and annotation tractable. In metagenomics, the data come from heterogeneous microbial communities, sometimes containing more than 10,000 species, with the sequence data being noisy and partial. From sampling, to assembly, to gene calling and function prediction, bioinformatics faces new demands in interpreting voluminous, noisy, and often partial sequence data. Although metagenomics is a relative newcomer to science, the past few years have seen an explosion in computational methods applied to metagenomic-based research. It is therefore not within the scope of this article to provide an exhaustive review. Rather, we provide here a concise yet comprehensive introduction to the current computational requirements presented by metagenomics, and review the recent progress made. We also note whether there is software that implements any of the methods presented here, and briefly review its utility. Nevertheless, it would be useful if readers of this article would avail themselves of the comment section provided by this journal, and relate their own experiences. Finally, the last section of this article provides a few representative studies illustrating different facets of recent scientific discoveries made using metagenomics.


Genome Biology | 2012

A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response

Scott Schwartz; Iddo Friedberg; Ivan Ivanov; Laurie A. Davidson; Jennifer S. Goldsby; David B. Dahl; Damir Herman; Mei Wang; Sharon M. Donovan; Robert S. Chapkin

BackgroundGut microbiota and the host exist in a mutualistic relationship, with the functional composition of the microbiota strongly affecting the health and well-being of the host. Thus, it is important to develop a synthetic approach to study the host transcriptome and the microbiome simultaneously. Early microbial colonization in infants is critically important for directing neonatal intestinal and immune development, and is especially attractive for studying the development of human-commensal interactions. Here we report the results from a simultaneous study of the gut microbiome and host epithelial transcriptome of three-month-old exclusively breast- and formula-fed infants.ResultsVariation in both host mRNA expression and the microbiome phylogenetic and functional profiles was observed between breast- and formula-fed infants. To examine the interdependent relationship between host epithelial cell gene expression and bacterial metagenomic-based profiles, the host transcriptome and functionally profiled microbiome data were subjected to novel multivariate statistical analyses. Gut microbiota metagenome virulence characteristics concurrently varied with immunity-related gene expression in epithelial cells between the formula-fed and the breast-fed infants.ConclusionsOur data provide insight into the integrated responses of the host transcriptome and microbiome to dietary substrates in the early neonatal period. We demonstrate that differences in diet can affect, via gut colonization, host expression of genes associated with the innate immune system. Furthermore, the methodology presented in this study can be adapted to assess other host-commensal and host-pathogen interactions using genomic and transcriptomic data, providing a synthetic genomics-based picture of host-commensal relationships.


PLOS Biology | 2013

The COMBREX Project: Design, Methodology, and Initial Results

Brian P. Anton; Yi-Chien Chang; Peter Brown; Han-Pil Choi; Lina L. Faller; Jyotsna Guleria; Zhenjun Hu; Niels Klitgord; Ami Levy-Moonshine; Almaz Maksad; Varun Mazumdar; Mark McGettrick; Lais Osmani; Revonda Pokrzywa; John Rachlin; Rajeswari Swaminathan; Benjamin Allen; Genevieve Housman; Caitlin Monahan; Krista Rochussen; Kevin Tao; Ashok S. Bhagwat; Steven E. Brenner; Linda Columbus; Valérie de Crécy-Lagard; Donald J. Ferguson; Alexey Fomenkov; Giovanni Gadda; Richard D. Morgan; Andrei L. Osterman

Experimental data exists for only a vanishingly small fraction of sequenced microbial genes. This community page discusses the progress made by the COMBREX project to address this important issue using both computational and experimental resources.


Advances in Nutrition | 2012

Host-Microbe Interactions in the Neonatal Intestine: Role of Human Milk Oligosaccharides

Sharon M. Donovan; Mei Wang; Min Li; Iddo Friedberg; Scott Schwartz; Robert S. Chapkin

The infant intestinal microbiota is shaped by genetics and environment, including the route of delivery and early dietary intake. Data from germ-free rodents and piglets support a critical role for the microbiota in regulating gastrointestinal and immune development. Human milk oligosaccharides (HMO) both directly and indirectly influence intestinal development by regulating cell proliferation, acting as prebiotics for beneficial bacteria and modulating immune development. We have shown that the gut microbiota, the microbial metatranscriptome, and metabolome differ between porcine milk-fed and formula-fed (FF) piglets. Our goal is to define how early nutrition, specifically HMO, shapes host-microbe interactions in breast-fed (BF) and FF human infants. We an established noninvasive method that uses stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in human infants. We hypothesized that a systems biology approach, combining i) HMO composition of the mothers milk with the infants gut gene expression and fecal bacterial composition, ii) gene expression, and iii short-chain fatty acid profiles would identify important mechanistic pathways affecting intestinal development of BF and FF infants in the first few months of life. HMO composition was analyzed by HLPC Chip/time-of-flight MS and 3 HMO clusters were identified using principle component analysis. Initial findings indicated that both host epithelial cell mRNA expression and the microbial phylogenetic profiles provided strong feature sets that distinctly classified the BF and FF infants. Ongoing analyses are designed to integrate the host transcriptome, bacterial phylogenetic profiles, and functional metagenomic data using multivariate statistical analyses.


PLOS Computational Biology | 2013

Biases in the experimental annotations of protein function and their effect on our understanding of protein function space.

Alexandra M. Schnoes; David C. Ream; Alex Thorman; Patricia C. Babbitt; Iddo Friedberg

The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.


Cellular and Molecular Life Sciences | 2007

Computational protein function prediction: Are we making progress?

Adam Godzik; M. Jambon; Iddo Friedberg

Abstract.The computational prediction of gene and protein function is rapidly gaining ground as a central undertaking in computational biology. Making sense of the flood of genomic data requires fast and reliable annotation. Many ingenious algorithms have been devised to infer a protein’s function from its amino acid sequence, 3D structure and chromosomal location of the encoding genes. However, there are significant challenges in assessing how well these programs perform. In this article we explore those challenges and review our own attempt at assessing the performance of those programs. We conclude that the task is far from complete and that a critical assessment of the performance of function prediction programs is necessary to make true progress in computational function prediction.


The ISME Journal | 2011

Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition

Scott Bielewicz; Elanor Bell; Weidong Kong; Iddo Friedberg; John C. Priscu; Rachael M. Morgan-Kiss

The McMurdo Dry Valleys of Antarctica harbor numerous permanently ice-covered lakes, which provide a year-round oasis for microbial life. Microbial eukaryotes in these lakes occupy a variety of trophic levels within the simple aquatic food web ranging from primary producers to tertiary predators. Here, we report the first molecular study to describe the vertical distribution of the eukaryotic community residing in the photic zone of the east lobe (ELB) and west lobe (WLB) of the chemically stratified Lake Bonney. The 18S ribosomal RNA (rRNA) libraries revealed vertically stratified populations dominated by photosynthetic protists, with a cryptophyte dominating shallow populations (ELB–6 m; WLB–10 m), a haptophyte occupying mid-depths (both lobes 13 m) and chlorophytes residing in the deepest layers (ELB–18 and 20 m; WLB–15 and 20 m) of the photic zone. A previously undetected stramenopile occurred throughout the water column of both lobes. Temporal variation in the eukaryotic populations was examined during the transition from Antarctic summer (24-h sunlight) to polar night (complete dark). Protist diversity was similar between the two lobes of Lake Bonney due to exchange between the photic zones of the two basins via a narrow bedrock sill. However, vertical and temporal variation in protist distribution occurred, indicating the influence of the unique water chemistry on the biology of the two dry valley watersheds.


Bioinformatics | 2007

Using an alignment of fragment strings for comparing protein structures

Iddo Friedberg; Tim Harder; Rachel Kolodny; Einat Sitbon; Zhanwen Li; Adam Godzik

MOTIVATION Most methods that are used to compare protein structures use three-dimensional (3D) structural information. At the same time, it has been shown that a 1D string representation of local protein structure retains a degree of structural information. This type of representation can be a powerful tool for protein structure comparison and classification, given the arsenal of sequence comparison tools developed by computational biology. However, in order to do so, there is a need to first understand how much information is contained in various possible 1D representations of protein structure. RESULTS Here we describe the use of a particular structure fragment library, denoted here as KL-strings, for the 1D representation of protein structure. Using KL-strings, we develop an infrastructure for comparing protein structures with a 1D representation. This study focuses on the added value gained from such a description. We show the new local structure language adds resolution to the traditional three-state (helix, strand and coil) secondary structure description, and provides a high degree of accuracy in recognizing structural similarities when used with a pairwise alignment benchmark. The results of this study have immediate applications towards fast structure recognition, and for fold prediction and classification.

Collaboration


Dive into the Iddo Friedberg's collaboration.

Top Co-Authors

Avatar

John Wooley

University of California

View shared research outputs
Top Co-Authors

Avatar

Predrag Radivojac

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip E. Bourne

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge