Idit Ginzberg
Agricultural Research Organization, Volcani Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Idit Ginzberg.
Molecular Plant-microbe Interactions | 1999
Orna Shaul; Shmuel Galili; Hanne Volpin; Idit Ginzberg; Yigal Elad; Ilan Chet; Yoram Kapulnik
The development of leaf disease symptoms and the accumulation of pathogenesis-related (PR) proteins were monitored in leaves of tobacco (Nicotiana tabacum cv. Xanthinc) plants colonized by the arbuscular mycorrhizal fungus Glomus intraradices. Leaves of mycorrhizal plants infected with the leaf pathogens Botrytis cinerea or tobacco mosaic virus showed a higher incidence and severity of necrotic lesions than those of nonmycorrhizal controls. Similar plant responses were obtained at both low (0.1 mM) and high (1.0 mM) nutritional P levels and with mutant plants (NahG) that are unable to accumulate salicylic acid. Application of PR-protein activators induced PR-1 and PR-3 expression in leaves of both nonmycorrhizal and mycorrhizal plants; however, accumulation and mRNA steady-site levels of these proteins were lower, and their appearance delayed, in leaves of the mycorrhizal plants. Application of 0.3 mM phosphate to the plants did not mimic the delay in PR expression observed in the mycorrhizal tobacco. Together, these data strongly support the existence of regulatory processes, initiated in the roots of mycorrhizal plants, that modify disease-symptom development and gene expression in their leaves.
Journal of Experimental Botany | 2009
Idit Ginzberg; Gilli Barel; Ron Ophir; Enosh Tzin; Zaccharia Tanami; Thippeswamy Muddarangappa; Walter De Jong; Edna Fogelman
Potato (Solanum tuberosum L.) periderm is composed of the meristematic phellogen that gives rise to an external layer of suberized phellem cells (the skin) and the internal parenchyma-like phelloderm. The continuous addition of new skin layers and the sloughing of old surface layers during tuber maturation results in smooth, shiny skin. However, smooth-skin varieties frequently develop unsightly russeting in response to high soil temperatures. Microscopic observation of microtubers exposed to high temperatures (37 degrees C) suggested heat-enhanced development and accumulation of suberized skin-cell layers. To identify the genes involved in the periderm response to heat stress, skin and phelloderm samples collected separately from immature tubers exposed to high soil temperatures (33 degrees C) and controls were subjected to transcriptome profiling using a potato cDNA array. As expected, the major functional group that was differentially expressed in both skin and phelloderm consisted of stress-related genes; however, while the major up-regulated phelloderm genes coded for heat-shock proteins, many of the skins most up-regulated sequences were similar to genes involved in the development of protective/symbiotic membranes during plant-microbe interactions. The primary activities regulated by differentially expressed peridermal transcription factors were response to stress (33%) and cell proliferation and differentiation (28%), possibly reflecting the major processes occurring in the heat-treated periderm and implying the integrated activity of the stress response and tissue development. Accumulating data suggest that the periderm, a defensive tissue, responds to heat stress by enhancing the production and accumulation of periderm/skin layers to create a thick protective cover. Skin russeting may be an indirect outcome; upon continued expansion of the tuber, the inflexible skin cracks while new layers are produced below it, resulting in a rough skin texture.
Journal of Experimental Botany | 2008
Gilli Barel; Idit Ginzberg
Periderm is a tissue of secondary origin that replaces damaged epidermis. It can be found in underground plant organs, as an above-ground tissue of woody species (cork), and as a wound-healing tissue. Its outer layers are composed of phellem cells with suberized walls that constitute a protective barrier, preventing pathogen invasion and fluid loss. In potato, a model for periderm studies, periderm tissue replaces the epidermis early in tuber development and the suberized phellems constitute the tubers skin. To identify factors involved in phellem/skin development and that play a role in its defensive characteristics, two-dimensional gel electrophoresis was used to compare the skin and parenchymatic flesh proteomes of young developing tubers. Proteins exhibiting differentially high signal intensity in the skin were sorted by functional categories. As expected, the differential skin proteome was enriched in proteins whose activity is characteristic of actively dividing tissues such as cell proliferation, C1 metabolism, and the oxidative respiratory chain. Interestingly, the major functional category consisted of proteins (63%) involved in plant defence responses to biotic and abiotic stresses. This group included three isozymes of caffeoyl-CoA O-methyltransferase and five isozymes of peroxidase that may play a role in suberization processes. The differential expression of these proteins in the skin was further verified by RT-PCR of their corresponding transcripts in skin and tuber flesh samples. The results presented here shed light on the early events in skin development and further expand the concept of the periderm as a protective tissue containing an array of plant defence components.
Trends in Plant Science | 2014
Arthur Villordon; Idit Ginzberg; Nurit Firon
It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.
Planta | 2012
Idit Ginzberg; Muddarangappa Thippeswamy; Edna Fogelman; Ufuk Demirel; Alice M. Mweetwa; James G. Tokuhisa; Richard E. Veilleux
Potato steroidal glycoalkaloids (SGAs) are toxic secondary metabolites whose total content in tubers must be regulated. SGAs are biosynthesized by the sterol branch of the mevalonic acid/isoprenoid pathway. In a previous study, we showed a correlation between SGA levels and the abundance of transcript coding for HMG-CoA reductase 1 (HMG1) and squalene synthase 1 (SQS1) in potato tissues and potato genotypes varying in SGA content. Here, Solanum tuberosum cv. Desirée (low SGA producer) was transformed with a gene construct containing the coding region of either HMG1 or SQS1 of Solanum chacoense Bitt. clone 8380-1, a high SGA producer. SGA levels in transgenic HMG-plants were either greater than (in eight of 14 plants) or no different from untransformed controls, whereas only four of 12 SQS-transgenics had greater SGA levels than control, as determined by HPLC. Quantitative real-time PCR was used to estimate relative steady-state transcript levels of isoprenoid-, steroid-, and SGA-related genes in leaves of the transgenic plants compared to nontransgenic controls. HMG-transgenic plants exhibited increased transcript accumulation of SQS1, sterol C24-methyltransferase type1 (SMT1), and solanidine glycosyltransferase 2 (SGT2), whereas SQS-transgenic plants, had consistently lower transcript levels of HMG1 and variable SMT1 and SGT2 transcript abundance among different transgenics. HMG-transgenic plants exhibited changes in transcript accumulation for some sterol biosynthetic genes as well. Taken together, the data suggest coordinated regulation of isoprenoid metabolism and SGA secondary metabolism.
Journal of Horticultural Science & Biotechnology | 2004
A. Keren-Keiserman; Z. Tanami; O. Shoseyov; Idit Ginzberg
Summary The suberized net tissue of the rind of muskmelon (Cucumis melo L.) is of agricultural importance as an indicator of fruit maturity and quality, and as a preventive factor against mechanical injury, both pre- and postharvest. The net originates from cracks that appear at the surface of the fruit. Therefore, a comparative study was conducted with two netted-rind and two smooth-rind melon varieties, to identify fruit characteristics associated with initiation of netting development. The developmental pattern of fruit expansion did not differ between smooth and netted melon varieties. Rather, our results indicated that inherited cuticular/epidermal characteristics are probably associated with the development of ®ssures in the fruit rind. The rind of the netted fruit was found to contain signi®cantly more cuticle than that of the smooth-rind variety during the period of maximal growth rate; moreover, in the rind of the smooth varieties the deposition of the cuticle was mainly on the outside of the epidermal cells, while in the case of the netted varieties it enclosed most of the cells. These cuticular characteristics of the netted varieties may reduce the elasticity of the rind during the dramatic expansion phase of the fruit, and so make it more susceptible to cracking and suberization. Further, the con®guration of ¯attened epidermal cells in the netted rind allowed less surface contact between adjacent cells and fewer cells per unit area of fruit surface, than the narrow and elongated epidermal cells found in the smooth-rind fruit. These epidermal characteristics of the netted varieties may contribute to the weakness of the epidermal layer in resisting the tensile forces imposed by the internal pressure of the growing fruit.
Theoretical and Applied Genetics | 2014
Norma C. Manrique-Carpintero; James G. Tokuhisa; Idit Ginzberg; Richard E. Veilleux
Key messageVariation for allelic state within genes of both primary and secondary metabolism influences the quantity and quality of steroidal glycoalkaloids produced in potato leaves.AbstractGenetic factors associated with the biosynthesis and accumulation of steroidal glycoalkaloids (SGAs) in potato were addressed by a candidate gene approach and whole genome single nucleotide polymorphism (SNP) genotyping. Allelic sequences spanning coding regions of four candidate genes [3-hydroxy-3-methylglutaryl coenzyme A reductase 2 (HMG2); 2,3-squalene epoxidase; solanidine galactosyltransferase; and solanidine glucosyltransferase (SGT2)] were obtained from two potato species differing in SGA composition: Solanum chacoense (chc 80-1) and Solanum tuberosum group Phureja (phu DH). An F2 population was genotyped and foliar SGAs quantified. The concentrations of α-solanine, α-chaconine, leptine I, leptine II and total SGAs varied broadly among F2 individuals. F2 plants with chc 80-1 alleles for HMG2 or SGT2 accumulated significantly greater leptines and total SGAs compared to plants with phu DH alleles. Plants with chc 80-1 alleles at both loci expressed the greatest levels of total SGAs, α-solanine and α-chaconine. A significant positive correlation was found between α-solanine and α-chaconine accumulation as well as between leptine I and leptine II. A whole genome SNP genotyping analysis of an F2 subsample verified the importance of chc 80-1 alleles at HMG2 and SGT2 for SGA synthesis and accumulation and suggested additional candidate genes including some previously associated with SGA production. Loci on five and seven potato pseudochromosomes were associated with synthesis and accumulation of SGAs, respectively. Two loci, on pseudochromosomes 1 and 6, explained phenotypic segregation of α-solanine and α-chaconine synthesis. Knowledge of the genetic factors influencing SGA production in potato may assist breeding for pest resistance.
Phytochemistry | 2012
Alice M. Mweetwa; Danielle Hunter; Rebecca Poe; Kim Harich; Idit Ginzberg; Richard E. Veilleux; James G. Tokuhisa
Potato (Solanum tuberosum L.), a domesticated species that is the fourth most important world agricultural commodity, requires significant management to minimize the effects of herbivore and pathogen damage on crop yield. A wild relative, Solanum chacoense Bitt., has been of interest to plant breeders because it produces an abundance of novel steroidal glycoalkaloid compounds, leptines and leptinines, which are particularly effective deterrents of herbivory by the Colorado potato beetle (Leptinotarsa decemlineata Say). Biochemical approaches were used in this study to investigate the formation and accumulation of SGAs in S. chacoense. SGA contents were determined in various organs at different stages of organ maturity during a time course of plant development. Leptines and leptinines were the main contributors to the increased levels in SGA concentration measured in the aerial versus the subterranean organs of S. chacoense accession 8380-1. Leptines were not detected in aboveground stolons until the stage where shoots had formed mature chlorophyllous leaves. To gain insights into SGA biosynthesis, the abundance of SGAs and steady-state transcripts of genes coding for enzymes of the central terpene and SGA-specific pathways in various plant organs at anthesis were compared. For two genes of primary terpene metabolism, transcript and SGA abundances were correlated, although with some discrepancies. For genes associated with SGA biosynthesis, transcripts were not detected in some tissues containing SGAs; however these transcripts were detected in the progenitor tissues, indicating the possibility that under our standard growth conditions, SGA biosynthesis is largely limited to highly proliferative tissues such as shoot, root and floral meristems.
G3: Genes, Genomes, Genetics | 2013
Norma C. Manrique-Carpintero; James G. Tokuhisa; Idit Ginzberg; Jason A. Holliday; Richard E. Veilleux
Natural variation in five candidate genes of the steroidal glycoalkaloid (SGA) metabolic pathway and whole-genome single nucleotide polymorphism (SNP) genotyping were studied in six wild [Solanum chacoense (chc 80-1), S. commersonii, S. demissum, S. sparsipilum, S. spegazzinii, S. stoloniferum] and cultivated S. tuberosum Group Phureja (phu DH) potato species with contrasting levels of SGAs. Amplicons were sequenced for five candidate genes: 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 and 2 (HMG1, HMG2) and 2.3-squalene epoxidase (SQE) of primary metabolism, and solanidine galactosyltransferase (SGT1), and glucosyltransferase (SGT2) of secondary metabolism. SNPs (n = 337) producing 354 variations were detected within 3.7 kb of sequenced DNA. More polymorphisms were found in introns than exons and in genes of secondary compared to primary metabolism. Although no significant deviation from neutrality was found, dN/dS ratios < 1 and negative values of Tajima’s D test suggested purifying selection and genetic hitchhiking in the gene fragments. In addition, patterns of dN/dS ratios across the SGA pathway suggested constraint by natural selection. Comparison of nucleotide diversity estimates and dN/dS ratios showed stronger selective constraints for genes of primary rather than secondary metabolism. SNPs (n = 24) with an exclusive genotype for either phu DH (low SGA) or chc 80-1 (high SGA) were identified for HMG2, SQE, SGT1 and SGT2. The SolCAP 8303 Illumina Potato SNP chip genotyping revealed eight informative SNPs on six pseudochromosomes, with homozygous and heterozygous genotypes that discriminated high, intermediate and low levels of SGA accumulation. These results can be used to evaluate SGA accumulation in segregating or association mapping populations.
Archive | 2008
Idit Ginzberg
Herbivores, and particularly chewing insects, cause substantial damage to the plant. In addition to lost tissue, there are great concerns of pathogen invasion and water loss at the site of the attack. One of the plant’s defense strategies is the formation of wound periderm at the boundaries of the invaded or damaged region to isolate it from non-wounded healthy tissue. The development of wound periderm following insect feeding has never been specifically examined; although studies of herbivory and wound signaling have indicated extensive overlap in the respective sets of induced genes. The periderm protective characteristics are mainly due to the suberized walls of its outer cell layers. Suberin is composed of aromatic and aliphatic polyester domains, and associated waxy material, providing biochemical and structural barriers against pathogen infection, and contributes to water-proofing of the periderm. Most of the current knowledge on wound periderm derives from healing processes of mechanically wounded potato tubers. The review summaries these studies, in light of plant response to herbivory.