Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Idit Sagiv-Barfi is active.

Publication


Featured researches published by Idit Sagiv-Barfi.


Journal of Clinical Investigation | 2013

Depleting tumor-specific Tregs at a single site eradicates disseminated tumors.

Aurélien Marabelle; Holbrook Kohrt; Idit Sagiv-Barfi; Bahareh Ajami; Robert C. Axtell; Gang Zhou; Ranjani Rajapaksa; Michael R. Green; James Torchia; Joshua Brody; Richard Luong; Michael D. Rosenblum; Lawrence Steinman; Hyam I. Levitsky; Victor Tse; Ronald Levy

Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti-CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK

Idit Sagiv-Barfi; Holbrook Kohrt; Debra K. Czerwinski; Patrick P. Ng; Betty Y. Chang; Ronald Levy

Significance Antibodies that block the negative signals between PD1-Ligand on tumor cells and PD-1 on T cells are effective therapies against several types of cancer. Ibrutinib, a covalent inhibitor of BTK is an approved therapy for B-cell leukemia and lymphoma. But ibrutinib also inactivates ITK, an enzyme required for certain subsets of T lymphocytes (Th2 T cells). We found that the combination of anti–PD-L1 antibodies and ibrutinib led to impressive therapeutic effects not only in animal models of lymphoma but, surprisingly, also in models of breast cancer and colon cancer. Based on these preclinical results, we suggest that the combination of PD-1/PD-L1 blockade and ibrutinib be tested broadly in patients with lymphoma and also in other hematologic malignancies and solid tumors. Monoclonal antibodies can block cellular interactions that negatively regulate T-cell immune responses, such as CD80/CTLA-4 and PD-1/PD1-L, amplifying preexisting immunity and thereby evoking antitumor immune responses. Ibrutinib, an approved therapy for B-cell malignancies, is a covalent inhibitor of BTK, a member of the B-cell receptor (BCR) signaling pathway, which is critical to the survival of malignant B cells. Interestingly this drug also inhibits ITK, an essential enzyme in Th2 T cells and by doing so it can shift the balance between Th1 and Th2 T cells and potentially enhance antitumor immune responses. Here we report that the combination of anti–PD-L1 antibody and ibrutinib suppresses tumor growth in mouse models of lymphoma that are intrinsically insensitive to ibrutinib. The combined effect of these two agents was also documented for models of solid tumors, such as triple negative breast cancer and colon cancer. The enhanced therapeutic activity of PD-L1 blockade by ibrutinib was accompanied by enhanced antitumor T-cell immune responses. These preclinical results suggest that the combination of PD1/PD1-L blockade and ibrutinib should be tested in the clinic for the therapy not only of lymphoma but also in other hematologic malignancies and solid tumors that do not even express BTK.


Blood | 2014

Anti-KIR Antibody Enhancement Of Anti-Lymphoma Activity Of Natural Killer Cells As Monotherapy and In Combination With Anti-CD20 Antibodies

Holbrook Kohrt; Ariane Thielens; Aurélien Marabelle; Idit Sagiv-Barfi; Caroline Sola; Fabien Chanuc; Nicolas Fuseri; Cécile Bonnafous; Debra K. Czerwinski; Amanda Rajapaksa; Erin Waller; Sophie Ugolini; Eric Vivier; Francois Romagne; Ronald Levy; Mathieu Blery; Pascale Andre

Natural killer (NK) cells mediate antilymphoma activity by spontaneous cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) when triggered by rituximab, an anti-CD20 monoclonal antibody (mAb) used to treat patients with B-cell lymphomas. The balance of inhibitory and activating signals determines the magnitude of the efficacy of NK cells by spontaneous cytotoxicity. Here, using a killer-cell immunoglobulin-like receptor (KIR) transgenic murine model, we show that blockade of the interface of inhibitory KIRs with major histocompatibility complex (MHC) class I antigens on lymphoma cells by anti-KIR antibodies prevents a tolerogenic interaction and augments NK-cell spontaneous cytotoxicity. In combination with anti-CD20 mAbs, anti-KIR treatment induces enhanced NK-cell-mediated, rituximab-dependent cytotoxicity against lymphoma in vitro and in vivo in KIR transgenic and syngeneic murine lymphoma models. These results support a therapeutic strategy of combination rituximab and KIR blockade through lirilumab, illustrating the potential efficacy of combining a tumor-targeting therapy with an NK-cell agonist, thus stimulating the postrituximab antilymphoma immune response.


Blood | 2014

Ibrutinib antagonizes rituximab-dependent NK cell–mediated cytotoxicity

Holbrook Kohrt; Idit Sagiv-Barfi; Sarwish Rafiq; Sarah E.M. Herman; Jonathon P. Butchar; Carolyn Cheney; Xiaoli Zhang; Joseph J. Buggy; Natarajan Muthusamy; Ronald Levy; Amy J. Johnson; John C. Byrd

To the editor: Ibrutinib is an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) with promising activity in CD20+ B-cell malignancies including recent US Food and Drug Administration approval in mantle cell lymphoma.[1][1] Given the homology between BTK and interleukin-2 inducible tyrosine


Journal of Clinical Investigation | 2014

Targeting CD137 enhances the efficacy of cetuximab

Holbrook Kohrt; A. Dimitrios Colevas; Roch Houot; Kipp Weiskopf; Matthew J. Goldstein; Peder Lund; A.M.S. Mueller; Idit Sagiv-Barfi; Aurélien Marabelle; Ruth Lira; Emily Troutner; Lori Richards; Amanda Rajapaska; Jonathan Hebb; Cariad Chester; Erin Waller; Anton Ostashko; Wen-Kai Weng; Lieping Chen; Debra K. Czerwinski; Yang-Xin Fu; John B. Sunwoo; Ronald Levy

Treatment with cetuximab, an EGFR-targeting IgG1 mAb, results in beneficial, yet limited, clinical improvement for patients with head and neck (HN) cancer as well as colorectal cancer (CRC) patients with WT KRAS tumors. Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells contributes to the efficacy of cetuximab. The costimulatory molecule CD137 (4-1BB) is expressed following NK and memory T cell activation. We found that isolated human NK cells substantially increased expression of CD137 when exposed to cetuximab-coated, EGFR-expressing HN and CRC cell lines. Furthermore, activation of CD137 with an agonistic mAb enhanced NK cell degranulation and cytotoxicity. In multiple murine xenograft models, including EGFR-expressing cancer cells, HN cells, and KRAS-WT and KRAS-mutant CRC, combined cetuximab and anti-CD137 mAb administration was synergistic and led to complete tumor resolution and prolonged survival, which was dependent on the presence of NK cells. In patients receiving cetuximab, the level of CD137 on circulating and intratumoral NK cells was dependent on postcetuximab time and host FcyRIIIa polymorphism. Interestingly, the increase in CD137-expressing NK cells directly correlated to an increase in EGFR-specific CD8+ T cells. These results support development of a sequential antibody approach against EGFR-expressing malignancies that first targets the tumor and then the host immune system.


Blood | 2015

Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma

Idit Sagiv-Barfi; Holbrook Kohrt; Laura Burckhardt; Debra K. Czerwinski; Ronald Levy

We have designed a novel therapeutic approach for lymphoma that combines targeted kinase inhibition with in situ vaccination. Intratumoral injection of an unmethylated cytosine guanine dinucleotide (CpG)-enriched oligodeoxynucleotide, an agonist for the toll-like receptor 9 (TLR9), induces the activation of natural killer cells, macrophages, and antigen presenting cells that control tumor growth at the local site. Ibrutinib, an irreversible inhibitor of Brutons tyrosine kinase, a key enzyme in the signaling pathway downstream of B-cell receptor, is an effective treatment against many types of B-cell lymphomas. The combination of intratumoral injection of CpG with systemic treatment by ibrutinib resulted in eradication of the tumors not only in the injected site, but also at distant sites. Surprisingly, this combinatorial antitumor effect required an intact T-cell immune system since it did not occur in nude, severe combined immunodeficiency, or T-cell depleted mice. Moreover, T cells from animals treated with intratumoral CpG and ibrutinib prevented the outgrowth of newly injected tumors. This result suggests that ibrutinib can induce immunogenic cell death of lymphoma cells and that concomitant stimulation of antigen-presenting cells in the tumor microenvironment by toll-like receptor ligands can lead to a powerful systemic antitumor immune response.


Science Translational Medicine | 2018

Eradication of spontaneous malignancy by local immunotherapy

Idit Sagiv-Barfi; Debra K. Czerwinski; Shoshana Levy; Israt S. Alam; Aaron T. Mayer; Sanjiv S. Gambhir; Ronald Levy

In situ vaccination with low doses of TLR ligands and anti-OX40 antibodies can cure widespread cancers in preclinical models. Deliver locally, act globally Mobilizing endogenous T cells to fight tumors is the goal of many immunotherapies. Sagiv-Barfi et al. investigated a combination therapy in multiple types of mouse cancer models that could provide sustainable antitumor immunity. Specifically, they combined intratumoral delivery of a TLR9 ligand with OX40 activation to ramp up T cell responses. This dual immunotherapy led to shrinkage of distant tumors and long-term survival of the animals, even in a stringent spontaneous tumor model. Both of these stimuli are in clinical trials as single agents and could likely be combined at great benefit for cancer patients. It has recently become apparent that the immune system can cure cancer. In some of these strategies, the antigen targets are preidentified and therapies are custom-made against these targets. In others, antibodies are used to remove the brakes of the immune system, allowing preexisting T cells to attack cancer cells. We have used another noncustomized approach called in situ vaccination. Immunoenhancing agents are injected locally into one site of tumor, thereby triggering a T cell immune response locally that then attacks cancer throughout the body. We have used a screening strategy in which the same syngeneic tumor is implanted at two separate sites in the body. One tumor is then injected with the test agents, and the resulting immune response is detected by the regression of the distant, untreated tumor. Using this assay, the combination of unmethylated CG–enriched oligodeoxynucleotide (CpG)—a Toll-like receptor 9 (TLR9) ligand—and anti-OX40 antibody provided the most impressive results. TLRs are components of the innate immune system that recognize molecular patterns on pathogens. Low doses of CpG injected into a tumor induce the expression of OX40 on CD4+ T cells in the microenvironment in mouse or human tumors. An agonistic anti-OX40 antibody can then trigger a T cell immune response, which is specific to the antigens of the injected tumor. Remarkably, this combination of a TLR ligand and an anti-OX40 antibody can cure multiple types of cancer and prevent spontaneous genetically driven cancers.


Bioorganic & Medicinal Chemistry | 2010

Design, synthesis, and evaluation of quinazoline T cell proliferation inhibitors.

Idit Sagiv-Barfi; Ester Weiss; Alexander Levitzki

We report here on a class of quinazoline molecules that inhibit T cell proliferation. The most potent compound N-p-tolyl-2-(3,4,5-trimethoxyphenyl)quinazolin-4-amine (S101) and its close analogs were found to inhibit the proliferation of T cells from human peripheral blood mononuclear cells (PBMC) and Jurkat cells, with IC(50) in the sub-micromolar range. The inhibitor induced G2 cell cycle arrest but did not inhibit IL-2 secretion. The anti-proliferative effect correlated with inhibition of the tyrosine phosphorylation of SLP-76, a molecular element in the signaling pathway of the T cell receptor (TCR). The inhibitor restrained proliferation of lymphocytes with much higher potency than non-hematopoietic cells. This new class of specific T cell proliferation inhibitors may serve as lead molecules for the development of agents aimed at diseases in which T cell signaling plays a role and agents to induce tolerance to grafted tissues or organs.


Cancer Research | 2014

Abstract 2941: Local tumor irradiation combined with α-PDL-1 immune checkpoint inhibition results in local and systemic anti-tumor responses: Successful translation of a mouse model to a human case series

Idit Sagiv-Barfi; Amanda Rajapaksa; Debra K. Czerwinski; Serena Chang; Jonathan Hebb; Cariad Chester; Erin Waller; Gregg Fine; Daniel Chen; Marcin Kowanetz; Bryan Irving; Ronald Levy; Holbrook Kohrt

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Introduction: Tumor irradiation induces innate and adaptive immune responses which, rarely, lead to tumor regression at distant sites, the abscopal effect. We have previously demonstrated that immunotherapy including Toll-like-receptor agonists (CpG) and checkpoint inhibitors (anti-CTLA4) both preclinically and clinically ([NCT00185965][1] & [NCT01769222][2]) can significantly increase the rate of systemic, abscopal responses (Kim, Blood 2012 & Brody, JCO 2010). Here we provide the first report of a preclinical murine model and patient case series following local radiation and systemic anti-PD-L1 ([NCT01375842][3]). Methods: Preclinical modeling was performed in a two-tumor, syngenic, A20, lymphoma BALB/c model combining fractionated single tumor radiation and systemic (i.p.) anti-PD-L1. Patients receiving MPDL3280A, a human mAb containing an engineered Fc-domain, as part of the phase 1 clinical trial with mixed responses or asymptomatic progression of disease were eligible for the addition of local radiation therapy. Murine and human immune responses including cell phenotype and function, specifically assessing expression of PD-L1 and production of IFNγ were determined by standard flow cytometry and time of flight mass cytometry (CyTOF). Results: Fractionated radiation delayed tumor growth at the treated site only, and systemic anti-PD-L1 reduced tumor growth rate at both sites, however despite prolonged survival all mice died by day 38 following either monotherapy (radiation or anti-PD-L1). In contrast, combination local fractionated radiation and systemic anti-PD-L1 flattened tumor growth at both the irradiated and un-irradiated site, and prolonged survival with 50% survival at day 48 post-tumor inoculation. Modulation of PD-L1 expression post-radiation and tumor-specific augmentation of IFNγ secretion correlated with the enhanced anti-tumor activity. Five patients including four with solid tumors received fractionated, non-definitive dose radiation with at least stabilization of systemic progression in all patients and a RECIST partial response at systemic sites in 1 patient, notably with a synovial sarcoma. Transient, grade 1-2 inflammatory adverse events (fevers, flu-like symptoms) occurred with no DLTs or serious immune-related toxicities. Modulation of PD-L1 expression, T cell phenotype and IFNγ secretion was observed and updated clinical and immune response will be presented. Conclusion: We provide the first report of combination local radiotherapy with anti-PD-L1 demonstrating synergy in a preclinical model and clinical activity in a limited case series. The magnitude of the immune response and abscopal response rate in mice and humans provides proof-of-concept that anti-PD-L1 may be an equally if not more potent combination immunotherapy with radiation compared to our experience with CpG and/or anti-CTLA4. Citation Format: Idit Sagiv-Barfi, Amanda Rajapaksa, Debra Czerwinski, Serena Chang, Jonathan Hebb, Cariad Chester, Erin Waller, Gregg Fine, Daniel Chen, Marcin Kowanetz, Bryan Irving, Ronald Levy, Holbrook Kohrt. Local tumor irradiation combined with α-PDL-1 immune checkpoint inhibition results in local and systemic anti-tumor responses: Successful translation of a mouse model to a human case series. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2941. doi:10.1158/1538-7445.AM2014-2941 [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00185965&atom=%2Fcanres%2F74%2F19_Supplement%2F2941.atom [2]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01769222&atom=%2Fcanres%2F74%2F19_Supplement%2F2941.atom [3]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01375842&atom=%2Fcanres%2F74%2F19_Supplement%2F2941.atom


Journal of Clinical Investigation | 2018

Imaging activated T cells predicts response to cancer vaccines

Israt S. Alam; Aaron T. Mayer; Idit Sagiv-Barfi; Kezheng Wang; Ophir Vermesh; Debra K. Czerwinski; Emily M. Johnson; Michelle L. James; Ronald Levy; Sanjiv S. Gambhir

In situ cancer vaccines are under active clinical investigation, given their reported ability to eradicate both local and disseminated malignancies. Intratumoral vaccine administration is thought to activate a T cell–mediated immune response, which begins in the treated tumor and cascades systemically. In this study, we describe a PET tracer (64Cu-DOTA-AbOX40) that enabled noninvasive and longitudinal imaging of OX40, a cell-surface marker of T cell activation. We report the spatiotemporal dynamics of T cell activation following in situ vaccination with CpG oligodeoxynucleotide in a dual tumor–bearing mouse model. We demonstrate that OX40 imaging was able to predict tumor responses on day 9 after treatment on the basis of tumor tracer uptake on day 2, with greater accuracy than both anatomical and blood-based measurements. These studies provide key insights into global T cell activation following local CpG treatment and indicate that 64Cu-DOTA-AbOX40 is a promising candidate for monitoring clinical cancer immunotherapy strategies.

Collaboration


Dive into the Idit Sagiv-Barfi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betty Y. Chang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge