Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ido Golding is active.

Publication


Featured researches published by Ido Golding.


Cell | 2005

Real-Time Kinetics of Gene Activity in Individual Bacteria

Ido Golding; Johan Paulsson; Scott M. Zawilski; Edward C. Cox

Protein levels have been shown to vary substantially between individual cells in clonal populations. In prokaryotes, the contribution to such fluctuations from the inherent randomness of gene expression has largely been attributed to having just a few transcripts of the corresponding mRNAs. By contrast, eukaryotic studies tend to emphasize chromatin remodeling and burst-like transcription. Here, we study single-cell transcription in Escherichia coli by measuring mRNA levels in individual living cells. The results directly demonstrate transcriptional bursting, similar to that indirectly inferred for eukaryotes. We also measure mRNA partitioning at cell division and correlate mRNA and protein levels in single cells. Partitioning is approximately binomial, and mRNA-protein correlations are weaker earlier in the cell cycle, where cell division has recently randomized the relative concentrations. Our methods further extend protein-based approaches by counting the integer-valued number of transcript with single-molecule resolution. This greatly facilitates kinetic interpretations in terms of the integer-valued random processes that produce the fluctuations.


Science | 2012

A SUMOylation-Dependent Transcriptional Subprogram Is Required for Myc-Driven Tumorigenesis

Jessica D. Kessler; Kristopher T. Kahle; Tingting Sun; Kristen L. Meerbrey; Michael R. Schlabach; Earlene M. Schmitt; Samuel O. Skinner; Qikai Xu; Mamie Z. Li; Zachary C. Hartman; Mitchell Rao; Peng Yu; Rocio Dominguez-Vidana; Anthony C. Liang; Nicole L. Solimini; Ronald J. Bernardi; Bing Yu; Tiffany Hsu; Ido Golding; Ji Luo; C. Kent Osborne; Chad J. Creighton; Susan G. Hilsenbeck; Rachel Schiff; Chad A. Shaw; Stephen J. Elledge; Thomas F. Westbrook

Taking the Myc Despite nearly 30 years of research into the mechanisms by which Myc oncogene dysregulation contributes to tumorigenesis, there are still no effective therapies that inhibit Myc activity. Kessler et al. (p. 348, published online 8 December; see the Perspective by Evan) searched for gene products that support Myc-driven tumorigenesis. One pharmacologically tractable target that emerged from the screen was the SUMO-activating enzyme complex SAE1/2, which catalyzes a posttranslational modification (SUMOylation) that alters protein behavior and function. SUMOylation was found to control the Myc transcriptional response, and its inhibition caused mitotic defects and apoptosis in Myc-dependent breast cancer cells. An RNA interference screen identifies a “druggable” enzyme whose inhibition halts tumor cell growth. Myc is an oncogenic transcription factor frequently dysregulated in human cancer. To identify pathways supporting the Myc oncogenic program, we used a genome-wide RNA interference screen to search for Myc–synthetic lethal genes and uncovered a role for the SUMO-activating enzyme (SAE1/2). Loss of SAE1/2 enzymatic activity drives synthetic lethality with Myc. Inactivation of SAE2 leads to mitotic catastrophe and cell death upon Myc hyperactivation. Mechanistically, SAE2 inhibition switches a transcriptional subprogram of Myc from activated to repressed. A subset of these SUMOylation-dependent Myc switchers (SMS genes) is required for mitotic spindle function and to support the Myc oncogenic program. SAE2 is required for growth of Myc-dependent tumors in mice, and gene expression analyses of Myc-high human breast cancers suggest that low SAE1 and SAE2 abundance in the tumors correlates with longer metastasis-free survival of the patients. Thus, inhibition of SUMOylation may merit investigation as a possible therapy for Myc-driven human cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Optical measurement of cycle-dependent cell growth

Mustafa Mir; Zhuo Wang; Zhen Shen; Michael Bednarz; Rashid Bashir; Ido Golding; Supriya G. Prasanth; Gabriel Popescu

Determining the growth patterns of single cells offers answers to some of the most elusive questions in contemporary cell biology: how cell growth is regulated and how cell size distributions are maintained. For example, a linear growth in time implies that there is no regulation required to maintain homeostasis; an exponential pattern indicates the opposite. Recently, there has been great effort to measure single cells using microelectromechanical systems technology, and several important questions have been explored. However, a unified, easy-to-use methodology to measure the growth rate of individual adherent cells of various sizes has been lacking. Here we demonstrate that a newly developed optical interferometric technique, known as spatial light interference microscopy, can measure the cell dry mass of many individual adherent cells in various conditions, over spatial scales from micrometers to millimeters, temporal scales ranging from seconds to days, and cell types ranging from bacteria to mammalian cells. We found evidence of exponential growth in Escherichia coli, which agrees very well with other recent reports. Perhaps most importantly, combining spatial light interference microscopy with fluorescence imaging provides a unique method for studying cell cycle-dependent growth. Thus, by using a fluorescent reporter for the S phase, we measured single cell growth over each phase of the cell cycle in human osteosarcoma U2OS cells and found that the G2 phase exhibits the highest growth rate, which is mass-dependent and can be approximated by an exponential.


Nature Genetics | 2011

General properties of transcriptional time series in Escherichia coli

Lok-hang So; Anandamohan Ghosh; Chenghang Zong; Leonardo A. Sepúlveda; Ronen Segev; Ido Golding

Gene activity is described by the time series of discrete, stochastic mRNA production events. This transcriptional time series shows intermittent, bursty behavior. One consequence of this temporal intricacy is that gene expression can be tuned by varying different features of the time series. Here we quantify copy-number statistics of mRNA from 20 Escherichia coli promoters using single-molecule fluorescence in situ hybridization in order to characterize the general properties of these transcriptional time series. We find that the degree of burstiness is correlated with gene expression level but is largely independent of other parameters of gene regulation. The observed behavior can be explained by the underlying variation in the duration of bursting events. Using Shannons mutual information function, we estimate the mutual information transmitted between an outside stimulus, such as the extracellular concentration of inducer molecules, and intracellular levels of mRNA. This suggests that the outside stimulus transmits information reflected in the properties of transcriptional time series.


Science | 2013

Genetic Determinants and Cellular Constraints in Noisy Gene Expression

Alvaro Sanchez; Ido Golding

In individual cells, transcription is a random process obeying single-molecule kinetics. Often, it occurs in a bursty, intermittent manner. The frequency and size of these bursts affect the magnitude of temporal fluctuations in messenger RNA and protein content within a cell, creating variation or “noise” in gene expression. It is still unclear to what degree transcriptional kinetics are specific to each gene and determined by its promoter sequence. Alternative scenarios have been proposed, in which the kinetics of transcription are governed by cellular constraints and follow universal rules across the genome. Evidence from genome-wide noise studies and from systematic perturbations of promoter sequences suggest that both scenarios—namely gene-specific versus genome-wide regulation of transcription kinetics—may be present to different degrees in bacteria, yeast, and animal cells.


Physica A-statistical Mechanics and Its Applications | 1998

Studies of bacterial branching growth using reaction–diffusion models for colonial development

Ido Golding; Yonathan Kozlovsky; Inon Cohen; Eshel Ben-Jacob

Various bacterial strains exhibit colonial branching patterns during growth on poor substrates. These patterns reflect bacterial cooperative self-organization and cybernetic processes of communication, regulation and control employed during colonial development. One method of modeling is the continuous, or coupled reaction–diffusion approach, in which continuous time evolution equations describe the bacterial density and the concentration of the relevant chemical fields. In the context of branching growth, this idea has been pursued by a number of groups. We present an additional model which includes a lubrication fluid excreted by the bacteria. We also add fields of chemotactic agents to the other models. We then present a critique of this whole enterprise with focus on the models’ potential for revealing new biological features.


Nature | 2015

The spliceosome is a therapeutic vulnerability in MYC-driven cancer

Tiffany Hsu; Lukas M. Simon; Nicholas J. Neill; Richard Marcotte; Azin Sayad; Christopher S. Bland; Gloria V. Echeverria; Tingting Sun; Sarah J. Kurley; Siddhartha Tyagi; Kristen L. Karlin; Rocio Dominguez-Vidana; Jessica D. Hartman; Alexander Renwick; Kathleen A. Scorsone; Ronald J. Bernardi; Samuel O. Skinner; Antrix Jain; Mayra Orellana; Chandraiah Lagisetti; Ido Golding; Sung Y. Jung; Joel R. Neilson; Xiang H.-F. Zhang; Thomas A. Cooper; Thomas R. Webb; Benjamin G. Neel; Chad A. Shaw; Thomas F. Westbrook

MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts. While such increases in RNA and protein production may endow cancer cells with pro-tumour hallmarks, this increase in synthesis may also generate new or heightened burden on MYC-driven cancer cells to process these macromolecules properly. Here we discover that the spliceosome is a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene in human mammary epithelial cells, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (such as SF3B1 and U2AF1) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total precursor messenger RNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Notably, genetic or pharmacological inhibition of the spliceosome in vivo impairs survival, tumorigenicity and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing, and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.


Physical Review E | 1999

Lubricating bacteria model for branching growth of bacterial colonies.

Yonathan Kozlovsky; Inon Cohen; Ido Golding; Eshel Ben-Jacob

Various bacterial strains (e.g., strains belonging to the genera Bacillus, Paenibacillus, Serratia, and Salmonella) exhibit colonial branching patterns during growth on poor semisolid substrates. These patterns reflect the bacterial cooperative self-organization. A central part of the cooperation is the collective formation of a lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by a nonlinear diffusion coefficient, branching patterns evolve. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.


PLOS Biology | 2005

Population fitness and the regulation of Escherichia coli genes by bacterial viruses.

Ying Chen; Ido Golding; Satoshi Sawai; Ling Guo; Edward C. Cox

Temperate bacteriophage parasitize their host by integrating into the host genome where they provide additional genetic information that confers higher fitness on the host bacterium by protecting it against invasion by other bacteriophage, by increasing serum resistance, and by coding for toxins and adhesion factors that help the parasitized bacterium invade or evade its host. Here we ask if a temperate phage can also regulate host genes. We find several different host functions that are down-regulated in lysogens. The pckA gene, required for gluconeogenesis in all living systems, is regulated directly by the principal repressor of many different temperate prophage, the cI protein. cI binds to the regulatory region of pckA, thereby shutting down pckA transcription. The pckA regulatory region has target sequences for many other temperate phage repressors, and thus we suggest that down-regulation of the host pckA pathway increases lysogen fitness by lowering the growth rate of lysogens in energy-poor environments, perhaps as an adaptive response to the host predation system or as an aspect of lysogeny that must be offset by down-regulating pckA.


Physica A-statistical Mechanics and Its Applications | 2000

BACTERIAL COOPERATIVE ORGANIZATION UNDER ANTIBIOTIC STRESS

Eshel Ben-Jacob; Inon Cohen; Ido Golding; David L. Gutnick; Marianna Tcherpakov; Dirk Helbing; Ilan G. Ron

Bacteria have developed sophisticated modes of cooperative behavior to cope with unfavorable environmental conditions. Here we report the effect of antibiotic stress on the colonial development of Paenibacillus dendritiformis and P. vortex. We focus on the effect of co-trimoxazole on the colonial organization of P. dendritiformis. We find that the exposure to non-lethal concentrations of antibiotic leads to dramatic changes in the colonial growth patterns. Branching, tip-splitting patterns are affected by reduction in the colonial fractal dimension from Df=2.0 to 1.7, appearance of pronounced weak chirality and pronounced radial orientation of the growth. We combine the experimental observations with numerical studies of both discrete and continuous generic models to reveal the causes for the modifications in the patterns. We conclude that the bacteria adjust their chemotactic signaling together with variations in the bacteria length and increase in the metabolic load.

Collaboration


Dive into the Ido Golding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Marie Sokac

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Herman

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge